Testing an inverse modeling approach with gradient boosting regression for stroke volume estimation using patient thermodilution data.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-03-18 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1530453
Vasiliki Vicky Bikia, Dionysios Adamopoulos, Marco Roffi, Georgios Rovas, Stéphane Noble, François Mach, Nikolaos Stergiopulos
{"title":"Testing an inverse modeling approach with gradient boosting regression for stroke volume estimation using patient thermodilution data.","authors":"Vasiliki Vicky Bikia, Dionysios Adamopoulos, Marco Roffi, Georgios Rovas, Stéphane Noble, François Mach, Nikolaos Stergiopulos","doi":"10.3389/frai.2025.1530453","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke volume (SV) is a major indicator of cardiovascular function, providing essential information about heart performance and blood flow adequacy. Accurate SV measurement is particularly important for assessing patients with heart failure, managing patients undergoing major surgeries, and delivering optimal care in critical settings. Traditional methods for estimating SV, such as thermodilution, are invasive and unsuitable for routine diagnostics. Non-invasive techniques, although safer and more accessible, often lack the precision and user-friendliness needed for continuous bedside monitoring. We developed a modified method for SV estimation that combines a validated 1-D model of the systemic circulation with machine learning. Our approach replaces the traditional optimization process developed in our previous work, with a regression method, utilizing an in silico-generated dataset of various hemodynamic profiles to create a gradient boosting regression-enabled SV estimator. This dataset accurately mimics the dynamic characteristics of the 1-D model, allowing for precise SV predictions without resource-intensive parameter adjustments. We evaluated our method against SV values derived from the gold standard thermodilution method in 24 patients. The results demonstrated that our approach provides a satisfactory agreement between the predicted and reference data, with a MAE of 16 mL, a normalized RMSE of 21%, a bias of -9.2 mL, and limits of agreement (LoA) of [-47, 28] mL. A correlation coefficient of <i>r</i> = 0.7 (<i>p</i> < 0.05) was reported, with the predicted SV slightly underestimated (68 ± 23 mL) in comparison to the reference SV (77 ± 26 mL). The significant reduction in computational time of our method for SV assessment should make it suitable for real-time clinical applications.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1530453"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1530453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke volume (SV) is a major indicator of cardiovascular function, providing essential information about heart performance and blood flow adequacy. Accurate SV measurement is particularly important for assessing patients with heart failure, managing patients undergoing major surgeries, and delivering optimal care in critical settings. Traditional methods for estimating SV, such as thermodilution, are invasive and unsuitable for routine diagnostics. Non-invasive techniques, although safer and more accessible, often lack the precision and user-friendliness needed for continuous bedside monitoring. We developed a modified method for SV estimation that combines a validated 1-D model of the systemic circulation with machine learning. Our approach replaces the traditional optimization process developed in our previous work, with a regression method, utilizing an in silico-generated dataset of various hemodynamic profiles to create a gradient boosting regression-enabled SV estimator. This dataset accurately mimics the dynamic characteristics of the 1-D model, allowing for precise SV predictions without resource-intensive parameter adjustments. We evaluated our method against SV values derived from the gold standard thermodilution method in 24 patients. The results demonstrated that our approach provides a satisfactory agreement between the predicted and reference data, with a MAE of 16 mL, a normalized RMSE of 21%, a bias of -9.2 mL, and limits of agreement (LoA) of [-47, 28] mL. A correlation coefficient of r = 0.7 (p < 0.05) was reported, with the predicted SV slightly underestimated (68 ± 23 mL) in comparison to the reference SV (77 ± 26 mL). The significant reduction in computational time of our method for SV assessment should make it suitable for real-time clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信