John Terborgh, Lisa Ong, Lisa Clare Davenport, Wei Harn Tan, Alicia Solana Mena, Kim McConkey, Ahimsa Campos-Arceiz
{"title":"Release of tree species diversity follows loss of elephants .from evergreen tropical forests.","authors":"John Terborgh, Lisa Ong, Lisa Clare Davenport, Wei Harn Tan, Alicia Solana Mena, Kim McConkey, Ahimsa Campos-Arceiz","doi":"10.1098/rspb.2024.2026","DOIUrl":null,"url":null,"abstract":"<p><p>We report on a decade of research on elephant impacts in equatorial evergreen forests in Gabon and Malaysia, comparing sites with (+) and without (-) elephants and documenting major differences in forest structure, tree species composition and tree species diversity. In both regions, we compared sites supporting natural densities of elephants with otherwise undisturbed sites from which elephants had been absent for several decades. Elephant (+) sites supported low densities of seedlings and saplings relative to elephant (-) sites. In Lope National Park, Gabon, 88% of saplings and small trees (<20 cm dbh) were of species avoided by elephants, implicating forest elephants as powerful filters in tree recruitment. In Malaysia, Asian elephants showed strong preferences for monocots over dicots, as we found through both indirect and direct means. Loss of elephants from both Asian and African forests releases diversity from top-down pressure, as preferred forage species increase in abundance, leading to increased density of small stems and tree species diversity. In contrast, loss of other major functional groups of animals, including top carnivores, seed predators and seed dispersers, often results in negative impacts on tree diversity.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2044","pages":"20242026"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We report on a decade of research on elephant impacts in equatorial evergreen forests in Gabon and Malaysia, comparing sites with (+) and without (-) elephants and documenting major differences in forest structure, tree species composition and tree species diversity. In both regions, we compared sites supporting natural densities of elephants with otherwise undisturbed sites from which elephants had been absent for several decades. Elephant (+) sites supported low densities of seedlings and saplings relative to elephant (-) sites. In Lope National Park, Gabon, 88% of saplings and small trees (<20 cm dbh) were of species avoided by elephants, implicating forest elephants as powerful filters in tree recruitment. In Malaysia, Asian elephants showed strong preferences for monocots over dicots, as we found through both indirect and direct means. Loss of elephants from both Asian and African forests releases diversity from top-down pressure, as preferred forage species increase in abundance, leading to increased density of small stems and tree species diversity. In contrast, loss of other major functional groups of animals, including top carnivores, seed predators and seed dispersers, often results in negative impacts on tree diversity.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.