InVAErt networks for amortized inference and identifiability analysis of lumped-parameter haemodynamic models.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guoxiang Grayson Tong, Carlos A Sing-Long, Daniele E Schiavazzi
{"title":"InVAErt networks for amortized inference and identifiability analysis of lumped-parameter haemodynamic models.","authors":"Guoxiang Grayson Tong, Carlos A Sing-Long, Daniele E Schiavazzi","doi":"10.1098/rsta.2024.0215","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of cardiovascular model parameters from electronic health records (EHRs) poses a significant challenge primarily due to lack of identifiability. Structural non-identifiability arises when a manifold in the space of parameters is mapped to a common output, while practical non-identifiability can result due to limited data, model misspecification or noise corruption. To address the resulting ill-posed inverse problem, optimization-based or Bayesian inference approaches typically use regularization, thereby limiting the possibility of discovering multiple solutions. In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems. We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped-parameter haemodynamic model from synthetic data to real data with missing components.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2293","pages":"20240215"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0215","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Estimation of cardiovascular model parameters from electronic health records (EHRs) poses a significant challenge primarily due to lack of identifiability. Structural non-identifiability arises when a manifold in the space of parameters is mapped to a common output, while practical non-identifiability can result due to limited data, model misspecification or noise corruption. To address the resulting ill-posed inverse problem, optimization-based or Bayesian inference approaches typically use regularization, thereby limiting the possibility of discovering multiple solutions. In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems. We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped-parameter haemodynamic model from synthetic data to real data with missing components.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.

从电子健康记录(EHR)中估计心血管模型参数是一项重大挑战,主要原因是缺乏可识别性。当参数空间中的一个流形被映射到一个共同的输出时,就会产生结构上的不可识别性,而实际的不可识别性则可能是由于数据有限、模型规范错误或噪声破坏造成的。为了解决由此产生的反问题,基于优化或贝叶斯推理的方法通常使用正则化,从而限制了发现多解的可能性。在本研究中,我们使用了 inVAErt 网络,这是一种基于神经网络的数据驱动框架,用于增强对刚性动力系统的数字孪生分析。我们在从合成数据到具有缺失成分的真实数据的六室整块参数血液动力学模型的生理反演中,展示了 inVAErt 网络的灵活性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信