Identifiability and model selection frameworks for models of high-grade glioma response to chemoradiation.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Khushi C Hiremath, Kenan Atakishi, Ernesto A B F Lima, Maguy Farhat, Bikash Panthi, Holly Langshaw, Mihir D Shanker, Wasif Talpur, Sara Thrower, Jodi Goldman, Caroline Chung, Thomas E Yankeelov, David A Hormuth Ii
{"title":"Identifiability and model selection frameworks for models of high-grade glioma response to chemoradiation.","authors":"Khushi C Hiremath, Kenan Atakishi, Ernesto A B F Lima, Maguy Farhat, Bikash Panthi, Holly Langshaw, Mihir D Shanker, Wasif Talpur, Sara Thrower, Jodi Goldman, Caroline Chung, Thomas E Yankeelov, David A Hormuth Ii","doi":"10.1098/rsta.2024.0212","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a family of biology-based mathematical models of high-grade glioma (HGG), capturing the key features of tumour growth and response to chemoradiation. We now seek to quantify the accuracy of parameter estimation and determine, when given a virtual patient cohort, which model was used to generate the tumours. In this way, we systematically test both the parameter and model identifiability. Virtual patients are generated from unique growth parameters whose growth dynamics are determined by the model family. We then assessed the ability to recover model parameters and select the model used to generate the tumour. We then evaluated the accuracy of predictions using the selected model at four weeks post-chemoradiation. We observed median parameter errors from 0.04% to 72.96%. Our model selection framework selected the model that was used to generate the data in 82% of the cases. Finally, we predicted the growth of the virtual tumours using the selected model resulting in low error at the voxel-level (concordance correlation coefficient (CCC) ranged from 0.66 to 0.99) and global level (percentage error in total tumour cellularity ranged from -12.35% to 0.07%). These results demonstrate the reliability of our framework to identify the most appropriate model under noisy conditions expected in the clinical setting.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2293","pages":"20240212"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0212","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed a family of biology-based mathematical models of high-grade glioma (HGG), capturing the key features of tumour growth and response to chemoradiation. We now seek to quantify the accuracy of parameter estimation and determine, when given a virtual patient cohort, which model was used to generate the tumours. In this way, we systematically test both the parameter and model identifiability. Virtual patients are generated from unique growth parameters whose growth dynamics are determined by the model family. We then assessed the ability to recover model parameters and select the model used to generate the tumour. We then evaluated the accuracy of predictions using the selected model at four weeks post-chemoradiation. We observed median parameter errors from 0.04% to 72.96%. Our model selection framework selected the model that was used to generate the data in 82% of the cases. Finally, we predicted the growth of the virtual tumours using the selected model resulting in low error at the voxel-level (concordance correlation coefficient (CCC) ranged from 0.66 to 0.99) and global level (percentage error in total tumour cellularity ranged from -12.35% to 0.07%). These results demonstrate the reliability of our framework to identify the most appropriate model under noisy conditions expected in the clinical setting.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.

高级别胶质瘤对放化疗反应模型的可识别性和模型选择框架。
我们已经开发了一系列基于生物学的高级别胶质瘤(HGG)数学模型,捕捉肿瘤生长和对放化疗反应的关键特征。我们现在试图量化参数估计的准确性,并确定,当给定虚拟患者队列时,哪种模型用于产生肿瘤。通过这种方法,我们系统地测试了参数和模型的可辨识性。虚拟患者由独特的生长参数生成,其生长动态由模型族决定。然后我们评估了恢复模型参数的能力,并选择了用于生成肿瘤的模型。然后,我们在放化疗后四周使用所选模型评估预测的准确性。我们观察到中位参数误差从0.04%到72.96%。我们的模型选择框架选择了用于在82%的情况下生成数据的模型。最后,我们使用所选择的模型预测虚拟肿瘤的生长,从而在体素水平(一致性相关系数(CCC)范围为0.66至0.99)和全局水平(总肿瘤细胞的百分比误差范围为-12.35%至0.07%)上产生低误差。这些结果证明了我们的框架在临床环境中嘈杂条件下识别最合适模型的可靠性。本文是主题问题“医疗保健和生物系统的不确定性量化(第2部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信