Hyper-DREAM, a Multimodal Digital Transformation Hypertension Management Platform Integrating Large Language Model and Digital Phenotyping: Multicenter Development and Initial Validation Study.

IF 3.5 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Yijun Wang, Tongjian Zhu, Tong Zhou, Bing Wu, Wuping Tan, Kezhong Ma, Zhuoya Yao, Jian Wang, Siyang Li, Fanglin Qin, Yannan Xu, Liguo Tan, Jinjun Liu, Jun Wang
{"title":"Hyper-DREAM, a Multimodal Digital Transformation Hypertension Management Platform Integrating Large Language Model and Digital Phenotyping: Multicenter Development and Initial Validation Study.","authors":"Yijun Wang, Tongjian Zhu, Tong Zhou, Bing Wu, Wuping Tan, Kezhong Ma, Zhuoya Yao, Jian Wang, Siyang Li, Fanglin Qin, Yannan Xu, Liguo Tan, Jinjun Liu, Jun Wang","doi":"10.1007/s10916-025-02176-1","DOIUrl":null,"url":null,"abstract":"<p><p>Within the mHealth framework, systematic research that collects and analyzes patient data to establish comprehensive digital health archives for hypertensive patients, and leverages large language models (LLMs) to assist clinicians in health management and Blood Pressure (BP) control remains limited. In this study, our aims to describe the design, development and usability evaluation process of a management platform (Hyper-DREAM) for hypertension. Our multidisciplinary team employed an iterative design approach over the course of a year to develop the Hyper-DREAM platform. This platform's primary functionalities encompass multimodal data collection (personal hypertensive digital phenotype archive), multimodal interventions (BP measurement, medication assistance, behavior modification, and hypertension education) and multimodal interactions (clinician-patient engagement and BP Coach component). In August 2024, the mHealth App Usability Questionnaire (MAUQ) was conducted involving 51 hypertensive patients recruited from three distinct centers. In parallel, six clinicians engaged in management activities and contributed feedback via the Doctor's Software Satisfaction Questionnaire (DSSQ). Concurrently, a real-world comparative experiment was conducted to evaluate the usability of the BP Coach, ChatGPT-4o Mini, ChatGPT-4o and clinicians. The comparative experiment demonstrated that the BP Coach achieved significantly higher scores in utility (mean scores 4.05, SD 0.87) and completeness (mean scores 4.12, SD 0.78) when compared to ChatGPT-4o Mini, ChatGPT-4o, and clinicians. In terms of clarity, the BP Coach was slightly lower than clinicians (mean scores 4.03, SD 0.88). In addition, the BP Coach exhibited lower performance in conciseness (mean scores 3.00, SD 0.96). Clinicians reported a marked improvement in work efficiency (2.67 vs. 4.17, P < .001) and experienced faster and more effective patient interactions (3.0 vs. 4.17, P = .004). Furthermore, the Hyper-DREAM platform significantly decreased work intensity (2.5 vs. 3.5, P = .01) and minimized disruptions to daily routines (2.33 vs. 3.55, P = .004). The Hyper-DREAM platform demonstrated significantly greater overall satisfaction compared to the WeChat-based standard management (3.33 vs. 4.17, P = .01). Additionally, clinicians exhibited a markedly higher willingness to integrate the Hyper-DREAM platform into clinical practice (2.67 vs. 4.17, P < .001). Furthermore, patient management time decreased from 11.5 min (SD 1.87) with Wechat-based standard management to 7.5 min (SD 1.84, P = .01) with Hyper-DREAM. Hypertensive patients reported high satisfaction with the Hyper-DREAM platform, including ease of use (mean scores 1.60, SD 0.69), system information arrangement (mean scores 1.69, SD 0.71), and usefulness (mean scores 1.57, SD 0.58). In conclusion, our study presents Hyper-DREAM, a novel artificial intelligence-driven platform for hypertension management, designed to alleviate clinician workload and exhibiting significant promise for clinical application. The Hyper-DREAM platform is distinguished by its user-friendliness, high satisfaction rates, utility, and effective organization of information. Furthermore, the BP Coach component underscores the potential of LLMs in advancing mHealth approaches to hypertension management.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"42"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02176-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Within the mHealth framework, systematic research that collects and analyzes patient data to establish comprehensive digital health archives for hypertensive patients, and leverages large language models (LLMs) to assist clinicians in health management and Blood Pressure (BP) control remains limited. In this study, our aims to describe the design, development and usability evaluation process of a management platform (Hyper-DREAM) for hypertension. Our multidisciplinary team employed an iterative design approach over the course of a year to develop the Hyper-DREAM platform. This platform's primary functionalities encompass multimodal data collection (personal hypertensive digital phenotype archive), multimodal interventions (BP measurement, medication assistance, behavior modification, and hypertension education) and multimodal interactions (clinician-patient engagement and BP Coach component). In August 2024, the mHealth App Usability Questionnaire (MAUQ) was conducted involving 51 hypertensive patients recruited from three distinct centers. In parallel, six clinicians engaged in management activities and contributed feedback via the Doctor's Software Satisfaction Questionnaire (DSSQ). Concurrently, a real-world comparative experiment was conducted to evaluate the usability of the BP Coach, ChatGPT-4o Mini, ChatGPT-4o and clinicians. The comparative experiment demonstrated that the BP Coach achieved significantly higher scores in utility (mean scores 4.05, SD 0.87) and completeness (mean scores 4.12, SD 0.78) when compared to ChatGPT-4o Mini, ChatGPT-4o, and clinicians. In terms of clarity, the BP Coach was slightly lower than clinicians (mean scores 4.03, SD 0.88). In addition, the BP Coach exhibited lower performance in conciseness (mean scores 3.00, SD 0.96). Clinicians reported a marked improvement in work efficiency (2.67 vs. 4.17, P < .001) and experienced faster and more effective patient interactions (3.0 vs. 4.17, P = .004). Furthermore, the Hyper-DREAM platform significantly decreased work intensity (2.5 vs. 3.5, P = .01) and minimized disruptions to daily routines (2.33 vs. 3.55, P = .004). The Hyper-DREAM platform demonstrated significantly greater overall satisfaction compared to the WeChat-based standard management (3.33 vs. 4.17, P = .01). Additionally, clinicians exhibited a markedly higher willingness to integrate the Hyper-DREAM platform into clinical practice (2.67 vs. 4.17, P < .001). Furthermore, patient management time decreased from 11.5 min (SD 1.87) with Wechat-based standard management to 7.5 min (SD 1.84, P = .01) with Hyper-DREAM. Hypertensive patients reported high satisfaction with the Hyper-DREAM platform, including ease of use (mean scores 1.60, SD 0.69), system information arrangement (mean scores 1.69, SD 0.71), and usefulness (mean scores 1.57, SD 0.58). In conclusion, our study presents Hyper-DREAM, a novel artificial intelligence-driven platform for hypertension management, designed to alleviate clinician workload and exhibiting significant promise for clinical application. The Hyper-DREAM platform is distinguished by its user-friendliness, high satisfaction rates, utility, and effective organization of information. Furthermore, the BP Coach component underscores the potential of LLMs in advancing mHealth approaches to hypertension management.

整合大型语言模型和数字表型的多模态数字化高血压管理平台Hyper-DREAM:多中心开发与初步验证研究
在移动健康框架内,收集和分析患者数据以建立全面的高血压患者数字健康档案的系统研究,并利用大型语言模型(LLMs)来协助临床医生进行健康管理和血压(BP)控制的研究仍然有限。在本研究中,我们的目的是描述一个高血压管理平台(Hyper-DREAM)的设计、开发和可用性评估过程。我们的多学科团队在一年的时间里采用了迭代设计方法来开发Hyper-DREAM平台。该平台的主要功能包括多模式数据收集(个人高血压数字表型档案)、多模式干预(血压测量、药物辅助、行为纠正和高血压教育)和多模式互动(临床-患者参与和血压教练组件)。2024年8月,从三个不同的中心招募了51名高血压患者,进行了移动健康应用程序可用性问卷调查(MAUQ)。同时,六名临床医生参与管理活动,并通过医生软件满意度问卷(DSSQ)提供反馈。同时,对BP Coach、chatgpt - 40 Mini、chatgpt - 40和临床医生的可用性进行了比较实验。对比实验表明,与chatgpt - 40 Mini、chatgpt - 40和临床医生相比,BP Coach在效用(平均得分4.05,SD 0.87)和完整性(平均得分4.12,SD 0.78)方面的得分明显更高。在清晰度方面,BP教练略低于临床医生(平均评分4.03,标准差0.88)。此外,BP教练在简洁性方面表现较差(平均得分3.00,标准差0.96)。临床医生报告工作效率显著提高(2.67比4.17,P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Systems
Journal of Medical Systems 医学-卫生保健
CiteScore
11.60
自引率
1.90%
发文量
83
审稿时长
4.8 months
期刊介绍: Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信