Crystallographic, electronic and vibrational properties of 2D silicate monolayers.

IF 2.8 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology
Journal of Applied Crystallography Pub Date : 2025-02-17 eCollection Date: 2025-04-01 DOI:10.1107/S1600576725000731
Gianfranco Ulian, Giovanni Valdrè
{"title":"Crystallographic, electronic and vibrational properties of 2D silicate monolayers.","authors":"Gianfranco Ulian, Giovanni Valdrè","doi":"10.1107/S1600576725000731","DOIUrl":null,"url":null,"abstract":"<p><p>Phyllosilicates are promising materials for optoelectronic applications because of their interesting electronic and magnetic properties that can be modulated by specific ionic substitutions. They can be easily exfoliated down to a single layer, enabling their use in specific 2D applications, such as the creation of van der Waals heterostructures and other materials with tailored physical properties. The present work reports a theoretical investigation of the structural, electronic, Raman and infrared properties of the (001) monolayer of phlogopite [K(Mg,Fe)<sub>3</sub>Si<sub>3</sub>AlO<sub>10</sub>(OH)<sub>2</sub>, with Mg/Fe ratio ≥ 2] and how they change with different Fe<sup>2+</sup>/Mg<sup>2+</sup> substitutions in the structure. Although other cations could occupy the octahedral sheet positions in phlogopite (and phyllosilicate in general), here the focus is only on Fe<sup>2+</sup>/Mg<sup>2+</sup> substitution. To this aim, density functional theory simulations were performed using the B3LYP functional, including long-range interactions in the physical treatment. The structure of the single layer of phlogopite showed a decrease of the tetrahedral rotation angle near the interlayer cations in comparison with that of the bulk mineral, which led to a tetrahedral sheet with a hexagonal pattern close to ideality, and an electronic band structure with a decreased band gap energy, down to about 3 eV. All results were discussed against the few available experimental and theoretical data in the scientific literature, finding good agreement but also further extending the knowledge of this interesting natural 2D material.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 2","pages":"349-362"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725000731","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Phyllosilicates are promising materials for optoelectronic applications because of their interesting electronic and magnetic properties that can be modulated by specific ionic substitutions. They can be easily exfoliated down to a single layer, enabling their use in specific 2D applications, such as the creation of van der Waals heterostructures and other materials with tailored physical properties. The present work reports a theoretical investigation of the structural, electronic, Raman and infrared properties of the (001) monolayer of phlogopite [K(Mg,Fe)3Si3AlO10(OH)2, with Mg/Fe ratio ≥ 2] and how they change with different Fe2+/Mg2+ substitutions in the structure. Although other cations could occupy the octahedral sheet positions in phlogopite (and phyllosilicate in general), here the focus is only on Fe2+/Mg2+ substitution. To this aim, density functional theory simulations were performed using the B3LYP functional, including long-range interactions in the physical treatment. The structure of the single layer of phlogopite showed a decrease of the tetrahedral rotation angle near the interlayer cations in comparison with that of the bulk mineral, which led to a tetrahedral sheet with a hexagonal pattern close to ideality, and an electronic band structure with a decreased band gap energy, down to about 3 eV. All results were discussed against the few available experimental and theoretical data in the scientific literature, finding good agreement but also further extending the knowledge of this interesting natural 2D material.

二维硅酸盐单层的晶体学、电子学和振动特性。
层状硅酸盐由于其有趣的电子和磁性能,可以通过特定的离子取代来调节,是光电子应用中很有前途的材料。它们可以很容易地剥离成单层,使其能够在特定的2D应用中使用,例如创建范德华异质结构和其他具有定制物理特性的材料。本文从理论上研究了(001)金云母单层[K(Mg,Fe)3Si3AlO10(OH)2, Mg/Fe比值≥2]的结构、电子、拉曼和红外性质,以及它们在结构中不同的Fe2+/Mg2+取代时的变化。虽然其他阳离子也可以占据绿云母(和一般的层状硅酸盐)的八面体薄片位置,但这里的重点仅是Fe2+/Mg2+取代。为此,使用B3LYP泛函进行密度泛函理论模拟,包括物理处理中的远程相互作用。与块状矿物相比,单层云母在层间阳离子附近的四面体旋转角减小,从而形成接近理想的六角形四面体薄片和带隙能量减小的电子带结构,带隙能量降至约3 eV。所有结果都与科学文献中少数可用的实验和理论数据进行了讨论,发现了很好的一致性,但也进一步扩展了这种有趣的天然二维材料的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信