{"title":"A generic cross-seeding approach to protein crystallization.","authors":"Ido Caspy, Shan Tang, Dom Bellini, Fabrice Gorrec","doi":"10.1107/S1600576725000457","DOIUrl":null,"url":null,"abstract":"<p><p>Obtaining diffraction-quality crystals is often the rate-limiting step during structure determination of biological macromolecules by X-ray crystallography. To address this problem, we investigated a cross-seeding approach with a mixture integrating a heterogeneous set of protein crystal fragments to be used as generic seeds. The fragments are nanometre-sized templates chosen to promote crystal nucleation of protein samples unrelated to the proteins forming the seeds. An atypical crystal form of the human serine hydrolase retinoblastoma binding protein 9 was obtained by adding the mixture to the protein sample before performing standard crystallization assays. The structure was solved by X-ray crystallography at 1.4 Å resolution. Follow-up experiments showed that crystal fragments of α-amylase were critical components in this particular result. The limitations and future applications of our experimental developments are discussed.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 2","pages":"383-391"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576725000457","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Obtaining diffraction-quality crystals is often the rate-limiting step during structure determination of biological macromolecules by X-ray crystallography. To address this problem, we investigated a cross-seeding approach with a mixture integrating a heterogeneous set of protein crystal fragments to be used as generic seeds. The fragments are nanometre-sized templates chosen to promote crystal nucleation of protein samples unrelated to the proteins forming the seeds. An atypical crystal form of the human serine hydrolase retinoblastoma binding protein 9 was obtained by adding the mixture to the protein sample before performing standard crystallization assays. The structure was solved by X-ray crystallography at 1.4 Å resolution. Follow-up experiments showed that crystal fragments of α-amylase were critical components in this particular result. The limitations and future applications of our experimental developments are discussed.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.