Gregor Domes, Marie-Anne Croyé, Petra Freilinger, Andreas Bohlscheid, Winfried A Willinek, Jobst Meyer
{"title":"Brain structure in triple X syndrome: regional gray matter volume and cortical thickness in adult women with 47,XXX karyotype.","authors":"Gregor Domes, Marie-Anne Croyé, Petra Freilinger, Andreas Bohlscheid, Winfried A Willinek, Jobst Meyer","doi":"10.1186/s11689-025-09608-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Changes in the brain structure of women with Triple X syndrome (karyotype 47,XXX) have been described in a few studies to date, including reduced total brain volume and regional reductions in gray substance in cortical and subcortical areas. However, the empirical evidence from adults is very limited and group comparison on a voxel-wise basis for gray matter volume and cortical thickness is still missing.</p><p><strong>Methods: </strong>Using voxel-based morphometry (VBM) and surface-based morphometry (SBM), we investigated regional gray matter changes in a sample of n = 20 adult women (aged 18-49 years) with 47,XXX karyotype using T1-weighted 3T MRI scans.</p><p><strong>Results: </strong>Compared to an age- and education-matched control group (and controlled for differences in total intracranial volume), the VBM revealed decreased regional gray matter volumes in the hippocampus, amygdala, parts of the basal ganglia, insula, prefrontal areas and cerebellum. To a lesser extent, we also noted specific reductions in cortical thickness in a smaller part of those regions.</p><p><strong>Conclusion: </strong>The observed network is significantly involved in the processing of cognitive, affective, and social stimuli and might be a potential neuronal correlate of the autism-like social-cognitive problems described in 47,XXX in the literature.</p>","PeriodicalId":16530,"journal":{"name":"Journal of Neurodevelopmental Disorders","volume":"17 1","pages":"18"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurodevelopmental Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s11689-025-09608-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Changes in the brain structure of women with Triple X syndrome (karyotype 47,XXX) have been described in a few studies to date, including reduced total brain volume and regional reductions in gray substance in cortical and subcortical areas. However, the empirical evidence from adults is very limited and group comparison on a voxel-wise basis for gray matter volume and cortical thickness is still missing.
Methods: Using voxel-based morphometry (VBM) and surface-based morphometry (SBM), we investigated regional gray matter changes in a sample of n = 20 adult women (aged 18-49 years) with 47,XXX karyotype using T1-weighted 3T MRI scans.
Results: Compared to an age- and education-matched control group (and controlled for differences in total intracranial volume), the VBM revealed decreased regional gray matter volumes in the hippocampus, amygdala, parts of the basal ganglia, insula, prefrontal areas and cerebellum. To a lesser extent, we also noted specific reductions in cortical thickness in a smaller part of those regions.
Conclusion: The observed network is significantly involved in the processing of cognitive, affective, and social stimuli and might be a potential neuronal correlate of the autism-like social-cognitive problems described in 47,XXX in the literature.
期刊介绍:
Journal of Neurodevelopmental Disorders is an open access journal that integrates current, cutting-edge research across a number of disciplines, including neurobiology, genetics, cognitive neuroscience, psychiatry and psychology. The journal’s primary focus is on the pathogenesis of neurodevelopmental disorders including autism, fragile X syndrome, tuberous sclerosis, Turner Syndrome, 22q Deletion Syndrome, Prader-Willi and Angelman Syndrome, Williams syndrome, lysosomal storage diseases, dyslexia, specific language impairment and fetal alcohol syndrome. With the discovery of specific genes underlying neurodevelopmental syndromes, the emergence of powerful tools for studying neural circuitry, and the development of new approaches for exploring molecular mechanisms, interdisciplinary research on the pathogenesis of neurodevelopmental disorders is now increasingly common. Journal of Neurodevelopmental Disorders provides a unique venue for researchers interested in comparing and contrasting mechanisms and characteristics related to the pathogenesis of the full range of neurodevelopmental disorders, sharpening our understanding of the etiology and relevant phenotypes of each condition.