KunMingShanHaiTang formula reprograms macrophage metabolism and promotes M2 polarization via the HIF-1α pathway to alleviate ulcerative colitis symptoms in a rat model.
{"title":"KunMingShanHaiTang formula reprograms macrophage metabolism and promotes M2 polarization via the HIF-1α pathway to alleviate ulcerative colitis symptoms in a rat model.","authors":"Zhiyun Zhang, Zhen Wang, Weiping Wan, Shumin Li, Wenzhi Yang, XiNan Shi","doi":"10.1007/s10863-025-10056-z","DOIUrl":null,"url":null,"abstract":"<p><p>The KunMingShanHaiTang Formula (KMSHTF), adjusted by Professor Zhong Chuanhua for the treatment of ulcerative colitis (UC), is the work of a renowned veteran practitioner of Chinese medicine. However, its specific mechanism remains unknown. Consequently, it is intriguing to investigate the molecular mechanism by which KMSHTF treats UC. To elucidate the mechanism of KMSHTF in the treatment of UC in rats. Initially, the active ingredients and key target genes of KMSHTF in treating UC were analyzed using network pharmacology. Protein-Protein interaction and gene enrichment analyses were performed to predict key targets and pathways. Subsequently, UC rats were treated with KMSHTF, and the expression proteins in intestinal tissue were detected. Finally, the active compounds of KMSHTF intreating ulcerative colitis were further screened using Molecular Docking, and their pharmacological effects were validated through cell experiments. A total of 47 active compounds and 365 key target genes of KMSHTF for UC treatment were identified through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,along with the GeneCards database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis revealed that KMSHTF exerted its therapeutic effects on UC through regulating multiple pathways. In this study, the HIF-1α pathway was selected as the main molecular pathway of KMSHTF treating UC, and further validation was conducted through in vivo and in vitro experiments.Animal studies revealed that KMSHTF significantly ameliorated UC symptoms in rats, including diarrhea,rectal bleeding and specific pathological alterations in the intestinal wall. Furthermore, KMSHTF reduced pro-inflammatory cytokines IL-6 and TNF-α, up-regulated IL-4 of M2 macrophages and down-regulated iNOS and IL-1β of M1 macrophages. Additionally, it decreased the expression levels of HKII and GLUT1 related HIF-1α pathway. The three active compounds of KMSHTF, Baicalein, Palmatine and Triptonide-were selected based on their strong binding affinity with HIF-1α and HKII through computational molecular docking. Cellular experiments demonstrated that each of these compounds downregulated the protein expression levels of HIF-1α, HKII, GLUT1 and IL-6 in an intestinal wall cell model. Of Note, Baicalein exhibited the most pronounced effect. However, the overexpression of HIF-1α reversed the Baicalein-induced downregulation of HKII, GLUT1 and IL-6 at the protein level in vitro. KMSHTF may modulate macrophage metabolism to promote M2 polarization through the HIF-1α pathway, thereby contributing to its therapeutic efficacy in ulcerative colitis (UC). Baicalein, Palmatine, and Triptonide are the three core active compounds of KMSHTF that primarily contribute to this hypothesis.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-025-10056-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The KunMingShanHaiTang Formula (KMSHTF), adjusted by Professor Zhong Chuanhua for the treatment of ulcerative colitis (UC), is the work of a renowned veteran practitioner of Chinese medicine. However, its specific mechanism remains unknown. Consequently, it is intriguing to investigate the molecular mechanism by which KMSHTF treats UC. To elucidate the mechanism of KMSHTF in the treatment of UC in rats. Initially, the active ingredients and key target genes of KMSHTF in treating UC were analyzed using network pharmacology. Protein-Protein interaction and gene enrichment analyses were performed to predict key targets and pathways. Subsequently, UC rats were treated with KMSHTF, and the expression proteins in intestinal tissue were detected. Finally, the active compounds of KMSHTF intreating ulcerative colitis were further screened using Molecular Docking, and their pharmacological effects were validated through cell experiments. A total of 47 active compounds and 365 key target genes of KMSHTF for UC treatment were identified through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,along with the GeneCards database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis revealed that KMSHTF exerted its therapeutic effects on UC through regulating multiple pathways. In this study, the HIF-1α pathway was selected as the main molecular pathway of KMSHTF treating UC, and further validation was conducted through in vivo and in vitro experiments.Animal studies revealed that KMSHTF significantly ameliorated UC symptoms in rats, including diarrhea,rectal bleeding and specific pathological alterations in the intestinal wall. Furthermore, KMSHTF reduced pro-inflammatory cytokines IL-6 and TNF-α, up-regulated IL-4 of M2 macrophages and down-regulated iNOS and IL-1β of M1 macrophages. Additionally, it decreased the expression levels of HKII and GLUT1 related HIF-1α pathway. The three active compounds of KMSHTF, Baicalein, Palmatine and Triptonide-were selected based on their strong binding affinity with HIF-1α and HKII through computational molecular docking. Cellular experiments demonstrated that each of these compounds downregulated the protein expression levels of HIF-1α, HKII, GLUT1 and IL-6 in an intestinal wall cell model. Of Note, Baicalein exhibited the most pronounced effect. However, the overexpression of HIF-1α reversed the Baicalein-induced downregulation of HKII, GLUT1 and IL-6 at the protein level in vitro. KMSHTF may modulate macrophage metabolism to promote M2 polarization through the HIF-1α pathway, thereby contributing to its therapeutic efficacy in ulcerative colitis (UC). Baicalein, Palmatine, and Triptonide are the three core active compounds of KMSHTF that primarily contribute to this hypothesis.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.