Yijie Zheng, Rafael Fuentes-Dominguez, Md Raihan Goni, Matt Clark, George S D Gordon, Fernando Perez-Cota
{"title":"Interpretable Multi-Task Conditional Neural Networks Reveal Cancer Cell Adhesion Characteristics From Phonon Microscopy Images.","authors":"Yijie Zheng, Rafael Fuentes-Dominguez, Md Raihan Goni, Matt Clark, George S D Gordon, Fernando Perez-Cota","doi":"10.1109/JBHI.2025.3556599","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in artificial intelligence (AI) show significant promise in multiscale modeling and biomedical informatics, particularly in the analysis of phonon microscopy (high-frequency ultrasound) data for cancer detection. This study addresses critical issues in data engineering for time-resolved phonon microscopy of biomedical samples by tackling the 'batch effect,' which arises from unavoidable technical variations between experiments, creating confounding variables that AI models may inadvertently learn. We present a multi-task conditional neural network framework that simultaneously achieves inter-batch calibration by removing confounding variables and accurate cell classification from time-resolved phonon-derived signals. We validate our approach by training and validating on different experimental batches, achieving a balanced precision of 89.22% and an average cross-validated precision of 89.07% for classifying background, healthy and cancerous regions. Furthermore, our model enables reconstruction of denoised images, which enable the physical interpretation of salient features indicative of disease states, such as sound velocity, sound attenuation, and cell adhesion to substrates. This work demonstrates the potential of AI methodologies in improving health outcomes and advancing cancer-informatics platforms.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3556599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in artificial intelligence (AI) show significant promise in multiscale modeling and biomedical informatics, particularly in the analysis of phonon microscopy (high-frequency ultrasound) data for cancer detection. This study addresses critical issues in data engineering for time-resolved phonon microscopy of biomedical samples by tackling the 'batch effect,' which arises from unavoidable technical variations between experiments, creating confounding variables that AI models may inadvertently learn. We present a multi-task conditional neural network framework that simultaneously achieves inter-batch calibration by removing confounding variables and accurate cell classification from time-resolved phonon-derived signals. We validate our approach by training and validating on different experimental batches, achieving a balanced precision of 89.22% and an average cross-validated precision of 89.07% for classifying background, healthy and cancerous regions. Furthermore, our model enables reconstruction of denoised images, which enable the physical interpretation of salient features indicative of disease states, such as sound velocity, sound attenuation, and cell adhesion to substrates. This work demonstrates the potential of AI methodologies in improving health outcomes and advancing cancer-informatics platforms.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.