Collection of Δ9-tetrahydrocannabinol from breath by liquid secondary adsorption analyzed with mass spectrometry: a technical note.

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS
Mikko Määttä, Pedro Fraccarolli, Jared Boock, Raj Attariwala
{"title":"Collection of Δ<sup>9</sup>-tetrahydrocannabinol from breath by liquid secondary adsorption analyzed with mass spectrometry: a technical note.","authors":"Mikko Määttä, Pedro Fraccarolli, Jared Boock, Raj Attariwala","doi":"10.1088/1752-7163/adc7d1","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a novel method for efficient collection of analytes of low volatility from human breath, liquid secondary adsorption (LSA), and the application of this method to drug detection with mass spectrometry. Cannabis legalization has occurred in many jurisdictions, creating a need for a simple method for detection of recency of use. Most existing breath sampling methods rely on a time consuming and complex process of adsorption of the analyte of interest, and still often result in low collection efficiencies. The pilot study shows the capability of a breath capture technique and mass spectrometry add on analysis device (Cannabix Breath Analysis System) to easily collect breath samples in the field and rapidly analyze them without complex sample preparation. The study also shows correlation between the breath data collected with this method and blood Δ<sup>9</sup>-tetrahydrocannabinol (THC) levels.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/adc7d1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel method for efficient collection of analytes of low volatility from human breath, liquid secondary adsorption (LSA), and the application of this method to drug detection with mass spectrometry. Cannabis legalization has occurred in many jurisdictions, creating a need for a simple method for detection of recency of use. Most existing breath sampling methods rely on a time consuming and complex process of adsorption of the analyte of interest, and still often result in low collection efficiencies. The pilot study shows the capability of a breath capture technique and mass spectrometry add on analysis device (Cannabix Breath Analysis System) to easily collect breath samples in the field and rapidly analyze them without complex sample preparation. The study also shows correlation between the breath data collected with this method and blood Δ9-tetrahydrocannabinol (THC) levels.

液相二次吸附质谱法收集呼气中△9-四氢大麻酚:技术说明。
介绍了一种高效采集人体呼吸中低挥发性分析物的新方法——液体二次吸附法(LSA),并将该方法应用于药物质谱检测。大麻合法化已在许多司法管辖区发生,因此需要一种简单的方法来检测最近的使用情况。大多数现有的呼吸采样方法依赖于一个耗时和复杂的过程的吸附感兴趣的分析物,仍然经常导致低收集效率。初步研究表明,呼吸捕获技术和质谱分析设备(大麻呼吸分析系统)能够轻松地在现场收集呼吸样本并快速分析,而无需复杂的样品制备。该研究还显示了用这种方法收集的呼吸数据与血液Δ9-tetrahydrocannabinol(四氢大麻酚)水平之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信