Gevik Grigorian, Victoria Volodina, Samiran Ray, Francisco Alejandro DiazDelao, Claire Black
{"title":"Addressing model discrepancy in a clinical model of the oxygen dissociation curve.","authors":"Gevik Grigorian, Victoria Volodina, Samiran Ray, Francisco Alejandro DiazDelao, Claire Black","doi":"10.1098/rsta.2024.0213","DOIUrl":null,"url":null,"abstract":"<p><p>Many mathematical models suffer from model discrepancy, posing a significant challenge to their use in clinical decision-making. In this article, we consider methods for addressing this issue. In the first approach, a mathematical model is treated as a black box system, and model discrepancy is defined as an independent and additive term that accounts for the difference between the physical phenomena and the model representation. A Gaussian Process (GP) is commonly used to capture the model discrepancy. An alternative approach is to construct a hybrid grey box model by filling in the incomplete parts of the mathematical model with a neural network. The neural network is used to learn the missing processes by comparing the observations with the model output. To enhance interpretability, the outputs of this non-parametric model can then be regressed into a symbolic form to obtain the learned model. We compare and discuss the effectiveness of these approaches in handling model discrepancy using clinical data from the ICU and the Siggaard-Andersen oxygen status algorithm.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2293","pages":"20240213"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0213","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Many mathematical models suffer from model discrepancy, posing a significant challenge to their use in clinical decision-making. In this article, we consider methods for addressing this issue. In the first approach, a mathematical model is treated as a black box system, and model discrepancy is defined as an independent and additive term that accounts for the difference between the physical phenomena and the model representation. A Gaussian Process (GP) is commonly used to capture the model discrepancy. An alternative approach is to construct a hybrid grey box model by filling in the incomplete parts of the mathematical model with a neural network. The neural network is used to learn the missing processes by comparing the observations with the model output. To enhance interpretability, the outputs of this non-parametric model can then be regressed into a symbolic form to obtain the learned model. We compare and discuss the effectiveness of these approaches in handling model discrepancy using clinical data from the ICU and the Siggaard-Andersen oxygen status algorithm.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.