Rubén de Dios, Kavita Gadar, Chris R Proctor, Evgenia Maslova, Jie Han, Mohamed A N Soliman, Dominika Krawiel, Emma L Dunbar, Bhupender Singh, Stelinda Peros, Tom Killelea, Anna-Luisa Warnke, Marius M Haugland, Edward L Bolt, Christian S Lentz, Christian J Rudolph, Ronan R McCarthy
{"title":"Saccharin disrupts bacterial cell envelope stability and interferes with DNA replication dynamics.","authors":"Rubén de Dios, Kavita Gadar, Chris R Proctor, Evgenia Maslova, Jie Han, Mohamed A N Soliman, Dominika Krawiel, Emma L Dunbar, Bhupender Singh, Stelinda Peros, Tom Killelea, Anna-Luisa Warnke, Marius M Haugland, Edward L Bolt, Christian S Lentz, Christian J Rudolph, Ronan R McCarthy","doi":"10.1038/s44321-025-00219-1","DOIUrl":null,"url":null,"abstract":"<p><p>Saccharin has been part of the human diet for over 100 years, and there is a comprehensive body of evidence demonstrating that it can influence the gut microbiome, ultimately impacting human health. However, the precise mechanisms through which saccharin can impact bacteria have remained elusive. In this work, we demonstrate that saccharin inhibits cell division, leading to cell filamentation with altered DNA synthesis dynamics. We show that these effects on the cell are superseded by the formation of bulges emerging from the cell envelope, which ultimately trigger cell lysis. We demonstrate that saccharin can inhibit the growth of both Gram-negative and Gram-positive bacteria as well as disrupt key phenotypes linked to host colonisation, such as motility and biofilm formation. In addition, we test its potential to disrupt established biofilms (single-species as well as polymicrobial) and its capacity to re-sensitise multidrug-resistant pathogens to last-resort antibiotics. Finally, we present in vitro and ex vivo evidence of the versatility of saccharin as a potential antimicrobial by integrating it into an effective hydrogel wound dressing.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00219-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Saccharin has been part of the human diet for over 100 years, and there is a comprehensive body of evidence demonstrating that it can influence the gut microbiome, ultimately impacting human health. However, the precise mechanisms through which saccharin can impact bacteria have remained elusive. In this work, we demonstrate that saccharin inhibits cell division, leading to cell filamentation with altered DNA synthesis dynamics. We show that these effects on the cell are superseded by the formation of bulges emerging from the cell envelope, which ultimately trigger cell lysis. We demonstrate that saccharin can inhibit the growth of both Gram-negative and Gram-positive bacteria as well as disrupt key phenotypes linked to host colonisation, such as motility and biofilm formation. In addition, we test its potential to disrupt established biofilms (single-species as well as polymicrobial) and its capacity to re-sensitise multidrug-resistant pathogens to last-resort antibiotics. Finally, we present in vitro and ex vivo evidence of the versatility of saccharin as a potential antimicrobial by integrating it into an effective hydrogel wound dressing.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)