Identification of cellular senescence-associated genes for predicting the diagnosis, prognosis and immunotherapy response in lung adenocarcinoma via a 113-combination machine learning framework.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Ting Ge, Guixin He, Qian Cui, Shuangcui Wang, Zekun Wang, Yingying Xie, Yuanyuan Tian, Juyue Zhou, Jianchun Yu, Jinmin Hu, Wentao Li
{"title":"Identification of cellular senescence-associated genes for predicting the diagnosis, prognosis and immunotherapy response in lung adenocarcinoma via a 113-combination machine learning framework.","authors":"Ting Ge, Guixin He, Qian Cui, Shuangcui Wang, Zekun Wang, Yingying Xie, Yuanyuan Tian, Juyue Zhou, Jianchun Yu, Jinmin Hu, Wentao Li","doi":"10.1007/s12672-025-02262-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung adenocarcinoma (LUAD) is a prevalent malignant tumor of the respiratory system, with high incidence and mortality rates. Cellular senescence (CS) widely affects the tumor microenvironment (TME) and tumor growth, and is related to the invasion and immune escape of tumor cells. This study aims to develop a robust CS-related signature of LUAD.</p><p><strong>Methods: </strong>Using the GSE140797, GSE42458, GSE75037, and GSE85841 datasets, in combination with cellular senescence databases, 75 LUAD CS-related differentially expressed genes (LUAD-CSDEGs) were identified through the weighted gene co-expression network analysis (WGCNA) method. Subsequently, we developed a novel machine learning framework that incorporated 12 machine learning algorithms and their 113 combinations to construct a LUAD CS-related signature (LUAD-CSRS), which were assessed in both training and validation cohorts. A LUAD-CSRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Finally, the difference of immune infiltration and response to immunotherapy in patients with high and low risk of LUAD were evaluated.</p><p><strong>Results: </strong>Based on a 113-combination machine learning framework, we finally identified a LUAD-CSRS containing eight genes: RECQL4, TIMP1, ANLN, SFN, MDK, KIF2C, AGR2, ITGB4. We also confirmed that it was significantly associated with survival, immune cell infiltration, prognosis, and response to immunotherapy in LUAD patients. Additionally, we found it is related to the activation of immune responses and may be involved in regulating the balance between immune cells in the TME.</p><p><strong>Conclusion: </strong>In summary, our study constructed a novel LUAD-CSRS, which is not only expected to be a powerful tool for assisting diagnosis and prognosis evaluation of LUAD, but also may provide guidance for personalized immunotherapy programs.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"440"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02262-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lung adenocarcinoma (LUAD) is a prevalent malignant tumor of the respiratory system, with high incidence and mortality rates. Cellular senescence (CS) widely affects the tumor microenvironment (TME) and tumor growth, and is related to the invasion and immune escape of tumor cells. This study aims to develop a robust CS-related signature of LUAD.

Methods: Using the GSE140797, GSE42458, GSE75037, and GSE85841 datasets, in combination with cellular senescence databases, 75 LUAD CS-related differentially expressed genes (LUAD-CSDEGs) were identified through the weighted gene co-expression network analysis (WGCNA) method. Subsequently, we developed a novel machine learning framework that incorporated 12 machine learning algorithms and their 113 combinations to construct a LUAD CS-related signature (LUAD-CSRS), which were assessed in both training and validation cohorts. A LUAD-CSRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Finally, the difference of immune infiltration and response to immunotherapy in patients with high and low risk of LUAD were evaluated.

Results: Based on a 113-combination machine learning framework, we finally identified a LUAD-CSRS containing eight genes: RECQL4, TIMP1, ANLN, SFN, MDK, KIF2C, AGR2, ITGB4. We also confirmed that it was significantly associated with survival, immune cell infiltration, prognosis, and response to immunotherapy in LUAD patients. Additionally, we found it is related to the activation of immune responses and may be involved in regulating the balance between immune cells in the TME.

Conclusion: In summary, our study constructed a novel LUAD-CSRS, which is not only expected to be a powerful tool for assisting diagnosis and prognosis evaluation of LUAD, but also may provide guidance for personalized immunotherapy programs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信