Radiotherapy is enhanced by CPH:SA IL-1α microparticles in a murine HNSCC tumor model.

IF 3.4 2区 医学 Q2 ONCOLOGY
M M Hasibuzzaman, Rui He, Ishrat Nourin Khan, Aliasger K Salem, Andrean L Simons
{"title":"Radiotherapy is enhanced by CPH:SA IL-1α microparticles in a murine HNSCC tumor model.","authors":"M M Hasibuzzaman, Rui He, Ishrat Nourin Khan, Aliasger K Salem, Andrean L Simons","doi":"10.1186/s12885-025-13995-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiotherapy (RT) can trigger immunogenic cell death which may be exploited to improve the effectiveness of immunotherapy. However, recent results from clinical trials testing RT/immunotherapy combinations in head and neck squamous cell carcinoma patients (HNSCC) have been disappointing. Interleukin-1 alpha (IL-1α) is a cytokine that can activate various aspects of anti-tumor immunity including dendritic cell (DC) activation which is critical for the recruitment of tumor infiltrating lymphocytes. Here we test the cytokine IL-1α encapsulated in 20:80 1,6-bis-(p-carboxyphenoxy)-hexane:sebacic acid (CPH:SA) copolymer-based microparticles (IL-1αMPs) as an adjuvant to RT in a murine syngeneic HNSCC mouse model. Thus the main research objective of this current study was to evaluate if IL-1αMPs can enhance the antitumor immune response of radiotherapy.</p><p><strong>Methods: </strong>Activation of immune cells in response to RT ± human recombinant IL-1α was evaluated in human peripheral blood mononuclear cell (PBMC):cancer cell co-cultures. A bilateral HNSCC tumor syngeneic mouse model was used to monitor mEERL tumor growth and immune cell recruitment in response to RT (8 Gy to irradiated tumor only) with and without intraperitoneal delivery of IL-1αMPs.  RESULTS: Results showed that IL-1α induced the activation of monocytes, NK cells, T cells, and DCs in PBMC:Cal-27 cell co-cultures but there was no enhanced immune cell activation (with the exception of NK cells) in vitro when combined with RT. RT and RT + IL-1αMPs significantly suppressed growth in irradiated mEERL tumors compared to control. However, only the combination therapy was able to slowdown growth of the non-irradiated tumors compared to the other treatment groups. Immune cell profiling revealed that RT caused acute lymphodepletion on treatment day 3 which was reversed by treatment day 11 in RT-exposed mice. The anti-tumor effect of RT + IL-1α was accompanied by significantly increased infiltration of DCs in the irradiated tumor and increased CD8 + and antigen (E7)-specific CD8 + T cell infiltration in both irradiated and non-irradiated tumors. The anti-tumor response of the combination therapy was completely abrogated by CD8 + T cell depletion.</p><p><strong>Conclusions: </strong>This data suggests that the addition of CPH:SA IL-1αMPs to RT may boost anti-tumor immune response and target both local and systemic disease. This combination is worthy of further investigation as an immunotherapeutic strategy and could represent a promising approach to improve survival outcomes in HNSCC patients.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"588"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13995-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Radiotherapy (RT) can trigger immunogenic cell death which may be exploited to improve the effectiveness of immunotherapy. However, recent results from clinical trials testing RT/immunotherapy combinations in head and neck squamous cell carcinoma patients (HNSCC) have been disappointing. Interleukin-1 alpha (IL-1α) is a cytokine that can activate various aspects of anti-tumor immunity including dendritic cell (DC) activation which is critical for the recruitment of tumor infiltrating lymphocytes. Here we test the cytokine IL-1α encapsulated in 20:80 1,6-bis-(p-carboxyphenoxy)-hexane:sebacic acid (CPH:SA) copolymer-based microparticles (IL-1αMPs) as an adjuvant to RT in a murine syngeneic HNSCC mouse model. Thus the main research objective of this current study was to evaluate if IL-1αMPs can enhance the antitumor immune response of radiotherapy.

Methods: Activation of immune cells in response to RT ± human recombinant IL-1α was evaluated in human peripheral blood mononuclear cell (PBMC):cancer cell co-cultures. A bilateral HNSCC tumor syngeneic mouse model was used to monitor mEERL tumor growth and immune cell recruitment in response to RT (8 Gy to irradiated tumor only) with and without intraperitoneal delivery of IL-1αMPs.  RESULTS: Results showed that IL-1α induced the activation of monocytes, NK cells, T cells, and DCs in PBMC:Cal-27 cell co-cultures but there was no enhanced immune cell activation (with the exception of NK cells) in vitro when combined with RT. RT and RT + IL-1αMPs significantly suppressed growth in irradiated mEERL tumors compared to control. However, only the combination therapy was able to slowdown growth of the non-irradiated tumors compared to the other treatment groups. Immune cell profiling revealed that RT caused acute lymphodepletion on treatment day 3 which was reversed by treatment day 11 in RT-exposed mice. The anti-tumor effect of RT + IL-1α was accompanied by significantly increased infiltration of DCs in the irradiated tumor and increased CD8 + and antigen (E7)-specific CD8 + T cell infiltration in both irradiated and non-irradiated tumors. The anti-tumor response of the combination therapy was completely abrogated by CD8 + T cell depletion.

Conclusions: This data suggests that the addition of CPH:SA IL-1αMPs to RT may boost anti-tumor immune response and target both local and systemic disease. This combination is worthy of further investigation as an immunotherapeutic strategy and could represent a promising approach to improve survival outcomes in HNSCC patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信