Chang-Qing Jiao, Chen Hu, Meng-Hua Sun, Yan Li, Chao Wu, Fei Xu, Lei Zhang, Fu-Rong Huang, Jun-Jie Zhou, Ji-Fei Dai, Min Ruan, Wen-Chao Wang, Qing-Song Liu, Jian Ge
{"title":"Targeting METTL3 mitigates venetoclax resistance via proteasome-mediated modulation of MCL1 in acute myeloid leukemia.","authors":"Chang-Qing Jiao, Chen Hu, Meng-Hua Sun, Yan Li, Chao Wu, Fei Xu, Lei Zhang, Fu-Rong Huang, Jun-Jie Zhou, Ji-Fei Dai, Min Ruan, Wen-Chao Wang, Qing-Song Liu, Jian Ge","doi":"10.1038/s41419-025-07560-w","DOIUrl":null,"url":null,"abstract":"<p><p>Venetoclax, a selective BCL2 inhibitor, is extensively utilized in clinical settings for the treatment of acute myeloid leukemia (AML). However, its efficacy is often compromised by the development of drug resistance. Hence, identification of potential venetoclax combination treatment strategies is imperative to overcome this acquired resistance. In this study, we discovered that inhibition of METTL3 can synergistically enhance the anti-leukemic efficacy of venetoclax, and is capable of overcoming venetoclax resistance in in vivo experiments and various venetoclax resistance models. Mechanistic study revealed that STM2457 augmented venetoclax activity by downregulating MCL1 and MYC, thereby increasing apoptosis in leukemia cells induced by venetoclax. Further investigation demonstrated that STM2457 promotes the ubiquitination and subsequent protein degradation of MCL1 primarily through pharmaceutically targeting METTL3. Moreover, through molecular docking-based virtual screening, we identified isoliquiritigenin as a potential novel small molecule natural product targeting METTL3, which exhibited potential effects as an anti-leukemic agent.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"233"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07560-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Venetoclax, a selective BCL2 inhibitor, is extensively utilized in clinical settings for the treatment of acute myeloid leukemia (AML). However, its efficacy is often compromised by the development of drug resistance. Hence, identification of potential venetoclax combination treatment strategies is imperative to overcome this acquired resistance. In this study, we discovered that inhibition of METTL3 can synergistically enhance the anti-leukemic efficacy of venetoclax, and is capable of overcoming venetoclax resistance in in vivo experiments and various venetoclax resistance models. Mechanistic study revealed that STM2457 augmented venetoclax activity by downregulating MCL1 and MYC, thereby increasing apoptosis in leukemia cells induced by venetoclax. Further investigation demonstrated that STM2457 promotes the ubiquitination and subsequent protein degradation of MCL1 primarily through pharmaceutically targeting METTL3. Moreover, through molecular docking-based virtual screening, we identified isoliquiritigenin as a potential novel small molecule natural product targeting METTL3, which exhibited potential effects as an anti-leukemic agent.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism