PCSK9 Regulates Cardiac Mitochondrial Cholesterol by Promoting TSPO Degradation.

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Marion Laudette, Malin Lindbom, Mathieu Cinato, Per-Olof Bergh, Kristina Skålén, Arif Muhammad, Azra Miljanovic, Tomasz Czuba, Rosie Perkins, J Gustav Smith, Frank Lezoualc'h, Malin C Levin, Jan Borén
{"title":"PCSK9 Regulates Cardiac Mitochondrial Cholesterol by Promoting TSPO Degradation.","authors":"Marion Laudette, Malin Lindbom, Mathieu Cinato, Per-Olof Bergh, Kristina Skålén, Arif Muhammad, Azra Miljanovic, Tomasz Czuba, Rosie Perkins, J Gustav Smith, Frank Lezoualc'h, Malin C Levin, Jan Borén","doi":"10.1161/CIRCRESAHA.124.325629","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cholesterol is critical for mitochondrial membrane structure and function. Given the emergence of mitochondria as a key factor in the pathogenesis of heart failure, mitochondrial cholesterol homeostasis may be crucial for maintaining mitochondrial properties and thus cardiac function. We previously showed that CM-<i>Pcsk9</i><sup>-/-</sup> mice (mice with cardiomyocyte-specific deletion of PCSK9 [proprotein convertase subtilisin-kexin type 9]) have impaired cardiomyocyte mitochondrial bioenergetics and heart function, paralleled by cardiomyocyte mitochondrial cholesterol accumulation and an increased number of mitochondria-endoplasmic reticulum contacts. However, the mechanisms linking PCSK9 to mitochondrial cholesterol homeostasis remain unclear. We hypothesized that PCSK9 acts on proteins involved in mitochondrial cholesterol trafficking in the heart to maintain cardiac mitochondrial function.</p><p><strong>Methods: </strong>By performing RNA sequencing and immunoblot on CM-<i>Pcsk9</i><sup>-/-</sup> and CM-<i>Pcsk9</i><sup>+/+</sup> mouse hearts, we showed that TSPO (translocator protein) was increased by <i>Pcsk9</i> deficiency. To investigate the relationship between <i>TSPO</i> levels and heart function in humans, we compared the transcriptome of human left ventricles with high versus low <i>TSPO</i> levels. We used H9c2 (a rat cardiomyoblast cell line) cardiomyocytes to explore the mechanism linking PCSK9/TSPO to mitochondrial cholesterol content and function. The impact of reduced TSPO levels on cardiac function and mitochondrial oxidation in CM-<i>Pcsk9</i><sup>-/-</sup> mice was tested using adeno-associated virus serotype 9 short hairpin TSPO.</p><p><strong>Results: </strong>Both gene and protein levels of TSPO, a mitochondrial protein involved in cholesterol transport, were increased in CM-<i>Pcsk9</i><sup>-/-</sup> mouse hearts. Transcriptome analysis showed that high <i>TSPO</i> expression in human left ventricles was associated with impaired mitochondrial and cardiac function. We showed that PCSK9 induced TSPO degradation through a proteasomal mechanism that occurs in cardiomyocytes but not hepatocytes and contributes to maintaining normal mitochondrial cholesterol composition and function. At the molecular level, endoplasmic reticulum-resident PCSK9 interacted with GRP78, reducing GRP78-TSPO interactions and leading to TSPO misfolding and degradation by the ubiquitin-proteasome pathway. Importantly, gene therapy-induced downregulation of TSPO in CM-<i>Pcsk9</i><sup>-</sup><sup>/</sup><sup>-</sup> mice prevented mitochondrial cholesterol accumulation and improved cardiac function.</p><p><strong>Conclusions: </strong>These findings indicate that PCSK9 regulates mitochondrial cholesterol levels by modulating the TSPO degradation in the heart. Modulation of mitochondrial cholesterol by targeting TSPO may be a promising therapeutic approach for heart failure.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325629","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cholesterol is critical for mitochondrial membrane structure and function. Given the emergence of mitochondria as a key factor in the pathogenesis of heart failure, mitochondrial cholesterol homeostasis may be crucial for maintaining mitochondrial properties and thus cardiac function. We previously showed that CM-Pcsk9-/- mice (mice with cardiomyocyte-specific deletion of PCSK9 [proprotein convertase subtilisin-kexin type 9]) have impaired cardiomyocyte mitochondrial bioenergetics and heart function, paralleled by cardiomyocyte mitochondrial cholesterol accumulation and an increased number of mitochondria-endoplasmic reticulum contacts. However, the mechanisms linking PCSK9 to mitochondrial cholesterol homeostasis remain unclear. We hypothesized that PCSK9 acts on proteins involved in mitochondrial cholesterol trafficking in the heart to maintain cardiac mitochondrial function.

Methods: By performing RNA sequencing and immunoblot on CM-Pcsk9-/- and CM-Pcsk9+/+ mouse hearts, we showed that TSPO (translocator protein) was increased by Pcsk9 deficiency. To investigate the relationship between TSPO levels and heart function in humans, we compared the transcriptome of human left ventricles with high versus low TSPO levels. We used H9c2 (a rat cardiomyoblast cell line) cardiomyocytes to explore the mechanism linking PCSK9/TSPO to mitochondrial cholesterol content and function. The impact of reduced TSPO levels on cardiac function and mitochondrial oxidation in CM-Pcsk9-/- mice was tested using adeno-associated virus serotype 9 short hairpin TSPO.

Results: Both gene and protein levels of TSPO, a mitochondrial protein involved in cholesterol transport, were increased in CM-Pcsk9-/- mouse hearts. Transcriptome analysis showed that high TSPO expression in human left ventricles was associated with impaired mitochondrial and cardiac function. We showed that PCSK9 induced TSPO degradation through a proteasomal mechanism that occurs in cardiomyocytes but not hepatocytes and contributes to maintaining normal mitochondrial cholesterol composition and function. At the molecular level, endoplasmic reticulum-resident PCSK9 interacted with GRP78, reducing GRP78-TSPO interactions and leading to TSPO misfolding and degradation by the ubiquitin-proteasome pathway. Importantly, gene therapy-induced downregulation of TSPO in CM-Pcsk9-/- mice prevented mitochondrial cholesterol accumulation and improved cardiac function.

Conclusions: These findings indicate that PCSK9 regulates mitochondrial cholesterol levels by modulating the TSPO degradation in the heart. Modulation of mitochondrial cholesterol by targeting TSPO may be a promising therapeutic approach for heart failure.

PCSK9通过促进TSPO降解调控心肌线粒体胆固醇。
背景:胆固醇对线粒体膜结构和功能至关重要。鉴于线粒体是心力衰竭发病机制中的关键因素,线粒体胆固醇稳态可能对维持线粒体特性和心脏功能至关重要。我们之前的研究表明,CM-Pcsk9-/-小鼠(心肌细胞特异性缺失PCSK9[枯草素蛋白转化酶9型]的小鼠)心肌细胞线粒体生物能量和心脏功能受损,同时心肌细胞线粒体胆固醇积累和线粒体-内质网接触数量增加。然而,PCSK9与线粒体胆固醇稳态的联系机制尚不清楚。我们假设PCSK9作用于参与心脏线粒体胆固醇运输的蛋白质,以维持心脏线粒体功能。方法:通过对CM-Pcsk9-/-和CM-Pcsk9+/+小鼠心脏进行RNA测序和免疫印迹,我们发现Pcsk9缺失导致TSPO(转运蛋白)升高。为了研究TSPO水平与人类心脏功能之间的关系,我们比较了TSPO水平高和低的人类左心室的转录组。我们使用H9c2(一种大鼠成心肌细胞系)心肌细胞来探索PCSK9/TSPO与线粒体胆固醇含量和功能的联系机制。采用腺相关病毒血清型9短发夹TSPO检测了TSPO水平降低对CM-Pcsk9-/-小鼠心功能和线粒体氧化的影响。结果:CM-Pcsk9-/-小鼠心脏中参与胆固醇转运的线粒体蛋白TSPO基因和蛋白水平均升高。转录组分析显示,TSPO在人左心室的高表达与线粒体和心功能受损有关。我们发现PCSK9通过蛋白酶体机制诱导TSPO降解,这种机制发生在心肌细胞而不是肝细胞中,并有助于维持正常的线粒体胆固醇组成和功能。在分子水平上,内质网驻留PCSK9与GRP78相互作用,减少GRP78-TSPO相互作用,并通过泛素-蛋白酶体途径导致TSPO错误折叠和降解。重要的是,基因治疗诱导的CM-Pcsk9-/-小鼠TSPO下调可防止线粒体胆固醇积累并改善心功能。结论:这些发现表明PCSK9通过调节心脏中TSPO的降解来调节线粒体胆固醇水平。通过靶向TSPO调节线粒体胆固醇可能是一种有前途的治疗心力衰竭的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信