Metabolic flux analysis in hiPSC-CMs reveals insights into cardiac dysfunction in propionic acidemia.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eva Richard, Hannah Marchuk, Mar Álvarez, Wentao He, Xiaoxin Chen, Lourdes R Desviat, Guo-Fang Zhang
{"title":"Metabolic flux analysis in hiPSC-CMs reveals insights into cardiac dysfunction in propionic acidemia.","authors":"Eva Richard, Hannah Marchuk, Mar Álvarez, Wentao He, Xiaoxin Chen, Lourdes R Desviat, Guo-Fang Zhang","doi":"10.1007/s00018-025-05661-5","DOIUrl":null,"url":null,"abstract":"<p><p>Propionic acidemia is an inborn error of metabolism caused by mutations in either the PCCA or PCCB genes. Patients with propionic acidemia experience a range of complications, including life-threatening cardiac dysfunctions. However, the pathological mechanisms underlying propionic acidemia-associated cardiac diseases remain largely unknown. To gain insights into the metabolic alterations in propionic acidemia, we studied human induced pluripotent stem cell-derived cardiomyocytes generated from a patient with propionic acidemia with two pathogenic PCCA mutations (p.Cys616_Val633del and p.Gly477Glufs9*) and from a healthy individual. Using stable isotope-based metabolic flux analysis, we confirmed that the PCCA mutations lead to impaired propionyl-CoA carboxylase activity in human induced pluripotent stem cell-derived cardiomyocytes. In addition to being converted to propionylcarnitine, the accumulated propionyl-CoA can also be hydrolyzed to propionate and exported out of the cell, serving as a secondary \"pressure valve\" to regulate cellular propionyl-CoA levels. Interestingly, the deficiency of propionyl-CoA carboxylase was found to shift fuel metabolism from fatty acid oxidation to increased glucose metabolism human in induced pluripotent stem cell-derived cardiomyocytes from patients with propionic acidemia. This metabolic switch is less energy-efficient and may contribute to the development of chronic cardiac dysfunction in patients with propionic acidemia.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"137"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05661-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Propionic acidemia is an inborn error of metabolism caused by mutations in either the PCCA or PCCB genes. Patients with propionic acidemia experience a range of complications, including life-threatening cardiac dysfunctions. However, the pathological mechanisms underlying propionic acidemia-associated cardiac diseases remain largely unknown. To gain insights into the metabolic alterations in propionic acidemia, we studied human induced pluripotent stem cell-derived cardiomyocytes generated from a patient with propionic acidemia with two pathogenic PCCA mutations (p.Cys616_Val633del and p.Gly477Glufs9*) and from a healthy individual. Using stable isotope-based metabolic flux analysis, we confirmed that the PCCA mutations lead to impaired propionyl-CoA carboxylase activity in human induced pluripotent stem cell-derived cardiomyocytes. In addition to being converted to propionylcarnitine, the accumulated propionyl-CoA can also be hydrolyzed to propionate and exported out of the cell, serving as a secondary "pressure valve" to regulate cellular propionyl-CoA levels. Interestingly, the deficiency of propionyl-CoA carboxylase was found to shift fuel metabolism from fatty acid oxidation to increased glucose metabolism human in induced pluripotent stem cell-derived cardiomyocytes from patients with propionic acidemia. This metabolic switch is less energy-efficient and may contribute to the development of chronic cardiac dysfunction in patients with propionic acidemia.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信