Xinxin Qie, Jie Zang, Shenquan Liu, Andrey L Shilnikov
{"title":"Synaptic delays shape dynamics and function in multimodal neural motifs.","authors":"Xinxin Qie, Jie Zang, Shenquan Liu, Andrey L Shilnikov","doi":"10.1063/5.0233640","DOIUrl":null,"url":null,"abstract":"<p><p>In neuroscience, delayed synaptic activity plays a pivotal and pervasive role in influencing synchronization, oscillation, and information-processing properties of neural networks. In small rhythm-generating networks, such as central pattern generators (CPGs), time-delays may regulate and determine the stability and variability of rhythmic activity, enabling organisms to adapt to environmental changes, and coordinate diverse locomotion patterns in both function and dysfunction. Here, we examine the dynamics of a three-cell CPG model in which time-delays are introduced into reciprocally inhibitory synapses between constituent neurons. We employ computational analysis to investigate the multiplicity and robustness of various rhythms observed in such multi-modal neural networks. Our approach involves deriving exhaustive two-dimensional Poincaré return maps for phase-lags between constituent neurons, where stable fixed points and invariant curves correspond to various phase-locked and phase-slipping/jitter rhythms. These rhythms emerge and disappear through various local (saddle-node, torus) and non-local (homoclinic) bifurcations, highlighting the multi-functionality (modality) observed in such small neural networks with fast inhibitory synapses.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233640","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In neuroscience, delayed synaptic activity plays a pivotal and pervasive role in influencing synchronization, oscillation, and information-processing properties of neural networks. In small rhythm-generating networks, such as central pattern generators (CPGs), time-delays may regulate and determine the stability and variability of rhythmic activity, enabling organisms to adapt to environmental changes, and coordinate diverse locomotion patterns in both function and dysfunction. Here, we examine the dynamics of a three-cell CPG model in which time-delays are introduced into reciprocally inhibitory synapses between constituent neurons. We employ computational analysis to investigate the multiplicity and robustness of various rhythms observed in such multi-modal neural networks. Our approach involves deriving exhaustive two-dimensional Poincaré return maps for phase-lags between constituent neurons, where stable fixed points and invariant curves correspond to various phase-locked and phase-slipping/jitter rhythms. These rhythms emerge and disappear through various local (saddle-node, torus) and non-local (homoclinic) bifurcations, highlighting the multi-functionality (modality) observed in such small neural networks with fast inhibitory synapses.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.