Synaptic delays shape dynamics and function in multimodal neural motifs.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0233640
Xinxin Qie, Jie Zang, Shenquan Liu, Andrey L Shilnikov
{"title":"Synaptic delays shape dynamics and function in multimodal neural motifs.","authors":"Xinxin Qie, Jie Zang, Shenquan Liu, Andrey L Shilnikov","doi":"10.1063/5.0233640","DOIUrl":null,"url":null,"abstract":"<p><p>In neuroscience, delayed synaptic activity plays a pivotal and pervasive role in influencing synchronization, oscillation, and information-processing properties of neural networks. In small rhythm-generating networks, such as central pattern generators (CPGs), time-delays may regulate and determine the stability and variability of rhythmic activity, enabling organisms to adapt to environmental changes, and coordinate diverse locomotion patterns in both function and dysfunction. Here, we examine the dynamics of a three-cell CPG model in which time-delays are introduced into reciprocally inhibitory synapses between constituent neurons. We employ computational analysis to investigate the multiplicity and robustness of various rhythms observed in such multi-modal neural networks. Our approach involves deriving exhaustive two-dimensional Poincaré return maps for phase-lags between constituent neurons, where stable fixed points and invariant curves correspond to various phase-locked and phase-slipping/jitter rhythms. These rhythms emerge and disappear through various local (saddle-node, torus) and non-local (homoclinic) bifurcations, highlighting the multi-functionality (modality) observed in such small neural networks with fast inhibitory synapses.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233640","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In neuroscience, delayed synaptic activity plays a pivotal and pervasive role in influencing synchronization, oscillation, and information-processing properties of neural networks. In small rhythm-generating networks, such as central pattern generators (CPGs), time-delays may regulate and determine the stability and variability of rhythmic activity, enabling organisms to adapt to environmental changes, and coordinate diverse locomotion patterns in both function and dysfunction. Here, we examine the dynamics of a three-cell CPG model in which time-delays are introduced into reciprocally inhibitory synapses between constituent neurons. We employ computational analysis to investigate the multiplicity and robustness of various rhythms observed in such multi-modal neural networks. Our approach involves deriving exhaustive two-dimensional Poincaré return maps for phase-lags between constituent neurons, where stable fixed points and invariant curves correspond to various phase-locked and phase-slipping/jitter rhythms. These rhythms emerge and disappear through various local (saddle-node, torus) and non-local (homoclinic) bifurcations, highlighting the multi-functionality (modality) observed in such small neural networks with fast inhibitory synapses.

多模态神经基图中的突触延迟、形状、动力学和功能。
在神经科学中,延迟突触活动在影响神经网络的同步、振荡和信息处理特性方面起着关键和普遍的作用。在小的节律产生网络中,如中枢模式发生器(CPGs),时间延迟可以调节和决定节律活动的稳定性和可变性,使生物体适应环境变化,并协调功能和功能障碍中的各种运动模式。在这里,我们研究了三细胞CPG模型的动力学,其中时滞被引入到组成神经元之间的相互抑制突触中。我们采用计算分析来研究在这种多模态神经网络中观察到的各种节律的多样性和鲁棒性。我们的方法包括为组成神经元之间的相位滞后导出详尽的二维庞加莱返回图,其中稳定的不动点和不变曲线对应于各种锁相和相位滑动/抖动节律。这些节律通过各种局部(鞍-结、环面)和非局部(同斜)分叉出现和消失,突出了在这种具有快速抑制性突触的小神经网络中观察到的多功能性(模态)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信