Tianle He, Qingyun Chen, Huifeng Li, Jiani Mao, Ju Luo, Dengjun Ma, Zhenguo Yang
{"title":"The potential mechanism of MicroRNA involvement in the regulation of muscle development in weaned piglets by tryptophan and its metabolites.","authors":"Tianle He, Qingyun Chen, Huifeng Li, Jiani Mao, Ju Luo, Dengjun Ma, Zhenguo Yang","doi":"10.1186/s12864-025-11424-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Muscle development is a key factor influencing the growth performance of piglets. Optimizing this developmental process is crucial for enhancing breeding efficiency and economic profitability. Tryptophan (Trp) is considered one of the key limiting amino acids for weaned piglets, plays an essential role in regulating feed intake, growth, and muscle development. However, the regulatory mechanisms by which Trp and its derivatives influence muscle development in weaned piglets remain unclear.</p><p><strong>Methods: </strong>The aim of this study was to investigate the regulatory pathways and potential mechanisms of Trp and its metabolites on muscle development in weaned piglets. In this study, 10 healthy castrated male piglets, 28 days old and weaned, were selected and randomly assigned to a control group (CON, 0.14% Trp) and a high tryptophan group (HT, 0.35% Trp), with 5 in each group. After a 7-day pre-feeding period, the formal feeding began, and after 28 days, the pigs were slaughtered and the longissimus dorsi muscles was collected for transcriptome sequencing.</p><p><strong>Results: </strong>The results indicated that different dietary Trp levels led to the identification of sixteen differentially expressed microRNAs (DE miRNAs) in the longissimus dorsi muscle of the weaned piglets. Target gene functional enrichment analysis showed that these DE miRNAs are involved in muscle cell proliferation, differentiation, protein deposition, and muscle development through multiple biological pathways. Furthermore, we constructed a protein-protein interaction (PPI) network for the target genes, with the enriched core gene cluster functions associated with cellular proliferation, signaling pathways, hormone release, and muscle development. Finally, qRT-PCR validated the reliability and accuracy of the RNA-seq results, revealing a correlation coefficient of 0.97 between the two methods.</p><p><strong>Conclusions: </strong>This study uncovers the potential mechanisms by which miRNAs participate in the regulation of muscle development in weaned piglets mediated by Trp and its metabolites, providing a theoretical basis and practical guidance for optimizing piglet management and health improvement.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"330"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11424-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Muscle development is a key factor influencing the growth performance of piglets. Optimizing this developmental process is crucial for enhancing breeding efficiency and economic profitability. Tryptophan (Trp) is considered one of the key limiting amino acids for weaned piglets, plays an essential role in regulating feed intake, growth, and muscle development. However, the regulatory mechanisms by which Trp and its derivatives influence muscle development in weaned piglets remain unclear.
Methods: The aim of this study was to investigate the regulatory pathways and potential mechanisms of Trp and its metabolites on muscle development in weaned piglets. In this study, 10 healthy castrated male piglets, 28 days old and weaned, were selected and randomly assigned to a control group (CON, 0.14% Trp) and a high tryptophan group (HT, 0.35% Trp), with 5 in each group. After a 7-day pre-feeding period, the formal feeding began, and after 28 days, the pigs were slaughtered and the longissimus dorsi muscles was collected for transcriptome sequencing.
Results: The results indicated that different dietary Trp levels led to the identification of sixteen differentially expressed microRNAs (DE miRNAs) in the longissimus dorsi muscle of the weaned piglets. Target gene functional enrichment analysis showed that these DE miRNAs are involved in muscle cell proliferation, differentiation, protein deposition, and muscle development through multiple biological pathways. Furthermore, we constructed a protein-protein interaction (PPI) network for the target genes, with the enriched core gene cluster functions associated with cellular proliferation, signaling pathways, hormone release, and muscle development. Finally, qRT-PCR validated the reliability and accuracy of the RNA-seq results, revealing a correlation coefficient of 0.97 between the two methods.
Conclusions: This study uncovers the potential mechanisms by which miRNAs participate in the regulation of muscle development in weaned piglets mediated by Trp and its metabolites, providing a theoretical basis and practical guidance for optimizing piglet management and health improvement.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.