Wenxiao Fan, Shuping Yang, Yiran Wei, Minle Tian, Qianying Liu, Xiaomeng Li, Jiahao Ding, Xuewei Li, Ming Mao, Xiaolei Han, Yifeng Du, Chengxuan Qiu, Yi Dong, Yongxiang Wang
{"title":"Characterization of brain morphology associated with metabolic dysfunction-associated steatotic liver disease in the UK Biobank.","authors":"Wenxiao Fan, Shuping Yang, Yiran Wei, Minle Tian, Qianying Liu, Xiaomeng Li, Jiahao Ding, Xuewei Li, Ming Mao, Xiaolei Han, Yifeng Du, Chengxuan Qiu, Yi Dong, Yongxiang Wang","doi":"10.1111/dom.16362","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Emerging evidence has linked metabolic dysfunction-associated steatotic liver disease (MASLD) with accelerated cognitive decline and dementia. We aimed to investigate the associations of MASLD with volumes of total brain tissue and subcortical grey matter, and white matter microstructures in the UK Biobank.</p><p><strong>Methods: </strong>This cross-sectional study included 29,195 individuals (aged 45-82 years) from the UK Biobank who undertook a magnetic resonance imaging (MRI) sub-study between 2014 and 2022. The brain MRI covers three modalities (T1, T2 FLAIR, and diffusion). Volumes of grey matter, subcortical grey matter structures, and regional cortex were derived from T1-weighted images. Fractional anisotropy (FA) and mean diffusivity (MD) were derived from diffusion tensor imaging (DTI) to assess global and tract-specific microstructure. MASLD was defined as the MRI-derived proton density fat fraction (MRI-PDFF) ≥5% and the presence of at least one cardiometabolic criterion. Data were analysed using multiple linear regression models.</p><p><strong>Results: </strong>MASLD was significantly associated with smaller volumes of total grey matter and subcortical grey matter (p < 0.05) and reduced Alzheimer's disease (AD)-signature cortical thickness (multivariable-adjusted β = -0.04; 95% confidence interval [CI]: -0.07, -0.01). Having MASLD was associated with higher total white matter hyperintensity (WMH) volume (multivariable-adjusted β = 0.12; 95% CI: 0.10, 0.15). For white matter microstructure, MASLD was associated with increased global FA (multivariable-adjusted β = 0.05; 95% CI: 0.03, 0.08) and reduced global MD (multivariable-adjusted β = -0.04; 95% CI: -0.07, -0.01).</p><p><strong>Conclusions: </strong>Brain morphology associated with MASLD is characterized by smaller subcortical grey matter volume and higher coherence but lower magnitudes of white matter microstructure.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.16362","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Emerging evidence has linked metabolic dysfunction-associated steatotic liver disease (MASLD) with accelerated cognitive decline and dementia. We aimed to investigate the associations of MASLD with volumes of total brain tissue and subcortical grey matter, and white matter microstructures in the UK Biobank.
Methods: This cross-sectional study included 29,195 individuals (aged 45-82 years) from the UK Biobank who undertook a magnetic resonance imaging (MRI) sub-study between 2014 and 2022. The brain MRI covers three modalities (T1, T2 FLAIR, and diffusion). Volumes of grey matter, subcortical grey matter structures, and regional cortex were derived from T1-weighted images. Fractional anisotropy (FA) and mean diffusivity (MD) were derived from diffusion tensor imaging (DTI) to assess global and tract-specific microstructure. MASLD was defined as the MRI-derived proton density fat fraction (MRI-PDFF) ≥5% and the presence of at least one cardiometabolic criterion. Data were analysed using multiple linear regression models.
Results: MASLD was significantly associated with smaller volumes of total grey matter and subcortical grey matter (p < 0.05) and reduced Alzheimer's disease (AD)-signature cortical thickness (multivariable-adjusted β = -0.04; 95% confidence interval [CI]: -0.07, -0.01). Having MASLD was associated with higher total white matter hyperintensity (WMH) volume (multivariable-adjusted β = 0.12; 95% CI: 0.10, 0.15). For white matter microstructure, MASLD was associated with increased global FA (multivariable-adjusted β = 0.05; 95% CI: 0.03, 0.08) and reduced global MD (multivariable-adjusted β = -0.04; 95% CI: -0.07, -0.01).
Conclusions: Brain morphology associated with MASLD is characterized by smaller subcortical grey matter volume and higher coherence but lower magnitudes of white matter microstructure.
期刊介绍:
Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.