Wenhan Guo, Yuan Gao, Dan Du, Jason E Sanchez, Yupeng Li, Weihong Qiu, Lin Li
{"title":"Elucidating the interactions between Kinesin-5/BimC and the microtubule: insights from TIRF microscopy and molecular dynamics simulations.","authors":"Wenhan Guo, Yuan Gao, Dan Du, Jason E Sanchez, Yupeng Li, Weihong Qiu, Lin Li","doi":"10.1093/bib/bbaf144","DOIUrl":null,"url":null,"abstract":"<p><p>Kinesin-5 s are bipolar motor proteins that contribute to cell division by crosslinking and sliding apart antiparallel microtubules inside the mitotic spindle. However, the mechanism underlying the interactions between kinesin-5 and the microtubule remains poorly understood. In this study, we investigated the binding of BimC, a kinesin-5 motor from Aspergillus nidulans, to the microtubule using a combination of total internal reflection fluorescence (TIRF) microscopy and molecular dynamics (MD) simulations. TIRF microscopy experiments revealed that increasing the concentration of KCl in the motility buffer from 0 mM to 150 mM completely abolishes the ability of BimC to bind to the microtubule. Consistent with this experimental finding, MD simulations demonstrated a significant reduction in the strength of electrostatic interactions between BimC and microtubules at 150 mM KCl compared to 0 mM KCl. Furthermore, we identified several salt bridges at the BimC-microtubule interface, with positively charged residues on BimC interacting with negatively charged residues on the tubulin heterodimer. These results provide mechanistic insights into the role of electrostatic interactions in kinesin-5-microtubule binding, advancing our understanding of the molecular underpinnings of kinesin-5 motility.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf144","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Kinesin-5 s are bipolar motor proteins that contribute to cell division by crosslinking and sliding apart antiparallel microtubules inside the mitotic spindle. However, the mechanism underlying the interactions between kinesin-5 and the microtubule remains poorly understood. In this study, we investigated the binding of BimC, a kinesin-5 motor from Aspergillus nidulans, to the microtubule using a combination of total internal reflection fluorescence (TIRF) microscopy and molecular dynamics (MD) simulations. TIRF microscopy experiments revealed that increasing the concentration of KCl in the motility buffer from 0 mM to 150 mM completely abolishes the ability of BimC to bind to the microtubule. Consistent with this experimental finding, MD simulations demonstrated a significant reduction in the strength of electrostatic interactions between BimC and microtubules at 150 mM KCl compared to 0 mM KCl. Furthermore, we identified several salt bridges at the BimC-microtubule interface, with positively charged residues on BimC interacting with negatively charged residues on the tubulin heterodimer. These results provide mechanistic insights into the role of electrostatic interactions in kinesin-5-microtubule binding, advancing our understanding of the molecular underpinnings of kinesin-5 motility.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.