Wenyang Wu, Wei Du, Klaas J Hellingwerf, Filipe Dos Branco Dos Santos
{"title":"Enhancement of D-mannitol production by fine-tuned expression of mannitol-1-phosphate dehydrogenase in Synechocystis sp. PCC6803.","authors":"Wenyang Wu, Wei Du, Klaas J Hellingwerf, Filipe Dos Branco Dos Santos","doi":"10.1002/btpr.70027","DOIUrl":null,"url":null,"abstract":"<p><p>D-Mannitol production was achieved in freshwater Synechocystis sp. PCC6803 via the heterologous expression of mannitol-1-phosphate dehydrogenase (mtlD) and mannitol-1-phosphatase (m1p) under control of the strong promoter P<sub>trc1</sub>. However, only 5.54 mg L<sup>-1</sup> of mannitol was found extracellularly after 7 days of cultivation, likely due to insufficient expression of a mutated mtlD lacking a methionine at position 332. This study compared mannitol levels using different promoters (P<sub>trc1</sub>, P<sub>psbA2</sub> and P<sub>nrsB</sub>) to control the expression of (un)mutated versions of mtlD in Synechocystis with co-expression of m1p. Our data suggest that even without the inducer, the weakest promoter, P<sub>nrsB</sub>, can support the expression of an unmutated mtlD in Synechocystis, which leads to 18.2 mg L<sup>-1</sup> of mannitol in 7 days without induction. Such titer is already much higher than the first engineered mannitol-producing Synechocystis. When 5 μM nickel sulfate was added to the medium as an inducer, mannitol production could significantly be increased further, up to 92.9 mg L<sup>-1</sup> after 7 days of induction, but it partially inhibited growth. Attempts with the other increasingly stronger promoters always failed to express the unmutated mtlD, probably due to the toxicity caused by the accumulation of the intermediate product, mannitol-1-phosphate. These results clearly suggest that the expression level of mtlD is the bottleneck in achieving a high yield of mannitol in Synechocystis, and consequently, that mannitol production can be enhanced by fine-tuning its expression. Future research is needed to identify bottlenecks that hinder mannitol productivity and long-term stability, facilitating the engineering of more efficient mannitol-producing cyanobacterial strains.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70027"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
D-Mannitol production was achieved in freshwater Synechocystis sp. PCC6803 via the heterologous expression of mannitol-1-phosphate dehydrogenase (mtlD) and mannitol-1-phosphatase (m1p) under control of the strong promoter Ptrc1. However, only 5.54 mg L-1 of mannitol was found extracellularly after 7 days of cultivation, likely due to insufficient expression of a mutated mtlD lacking a methionine at position 332. This study compared mannitol levels using different promoters (Ptrc1, PpsbA2 and PnrsB) to control the expression of (un)mutated versions of mtlD in Synechocystis with co-expression of m1p. Our data suggest that even without the inducer, the weakest promoter, PnrsB, can support the expression of an unmutated mtlD in Synechocystis, which leads to 18.2 mg L-1 of mannitol in 7 days without induction. Such titer is already much higher than the first engineered mannitol-producing Synechocystis. When 5 μM nickel sulfate was added to the medium as an inducer, mannitol production could significantly be increased further, up to 92.9 mg L-1 after 7 days of induction, but it partially inhibited growth. Attempts with the other increasingly stronger promoters always failed to express the unmutated mtlD, probably due to the toxicity caused by the accumulation of the intermediate product, mannitol-1-phosphate. These results clearly suggest that the expression level of mtlD is the bottleneck in achieving a high yield of mannitol in Synechocystis, and consequently, that mannitol production can be enhanced by fine-tuning its expression. Future research is needed to identify bottlenecks that hinder mannitol productivity and long-term stability, facilitating the engineering of more efficient mannitol-producing cyanobacterial strains.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.