Melissa Mejia-Gutierrez, Brigitte Moser, Marissa Pirlot, Haixia Zhang, Paulos Chumala, George S Katselis, David R J Palmer, Ed S Krol
{"title":"Caffeine and Nicotine with N-Substituted Diazirine Photoaffinity Labels Form Adducts at Tyrosine-39 of α-Synuclein.","authors":"Melissa Mejia-Gutierrez, Brigitte Moser, Marissa Pirlot, Haixia Zhang, Paulos Chumala, George S Katselis, David R J Palmer, Ed S Krol","doi":"10.1021/acschemneuro.5c00074","DOIUrl":null,"url":null,"abstract":"<p><p>Aggregates of the protein α-synuclein are found in Lewy bodies in the brains of Parkinson's disease (PD) patients. Small molecules that can attenuate or halt α-synuclein aggregation have been studied as potential therapeutics for PD. However, we have a limited understanding of how these molecules bind to α-synuclein. We previously identified that caffeine, nicotine, and 1-aminoindan all bind to both the N- and C-terminus of α-synuclein, although the binding location remains unknown. In an effort to identify these binding regions on α-synuclein, we synthesized diazirine photoaffinity probes attached to caffeine (C-Dz), nicotine (N-Dz), and 1-aminoindan (I-Dz) and allowed each to react with α-synuclein <i>in vitro</i>. We then treated the incubation mixture with trypsin and employed time-of-flight mass spectrometry to analyze the resulting peptides. Our findings reveal a distinctive binding pattern among the probes: C-Dz forms covalent bonds with Tyr-39 and Glu-20, while N-Dz selectively forms a covalent bond with Tyr-39. Intriguingly, we could not detect the labeling of I-Dz to any specific amino acids. All of the diazirine-bound peptides were found near the N-terminus. Our results suggest that the N-terminal region near Tyr-39 bears further study to elucidate the binding interactions of small molecules with α-synuclein and may be a target for anti-PD agents.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00074","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aggregates of the protein α-synuclein are found in Lewy bodies in the brains of Parkinson's disease (PD) patients. Small molecules that can attenuate or halt α-synuclein aggregation have been studied as potential therapeutics for PD. However, we have a limited understanding of how these molecules bind to α-synuclein. We previously identified that caffeine, nicotine, and 1-aminoindan all bind to both the N- and C-terminus of α-synuclein, although the binding location remains unknown. In an effort to identify these binding regions on α-synuclein, we synthesized diazirine photoaffinity probes attached to caffeine (C-Dz), nicotine (N-Dz), and 1-aminoindan (I-Dz) and allowed each to react with α-synuclein in vitro. We then treated the incubation mixture with trypsin and employed time-of-flight mass spectrometry to analyze the resulting peptides. Our findings reveal a distinctive binding pattern among the probes: C-Dz forms covalent bonds with Tyr-39 and Glu-20, while N-Dz selectively forms a covalent bond with Tyr-39. Intriguingly, we could not detect the labeling of I-Dz to any specific amino acids. All of the diazirine-bound peptides were found near the N-terminus. Our results suggest that the N-terminal region near Tyr-39 bears further study to elucidate the binding interactions of small molecules with α-synuclein and may be a target for anti-PD agents.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research