Tanshinone IIA Ameliorates Myocardial Ischemia–Reperfusion Injury via Activating HDAC1-Repressed Nrf2-xCT/Gpx4/HO-1 Axis

IF 3.2 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ke Yan, Shenghui Yu, Xiang Gao, Lei Li, Li Ding
{"title":"Tanshinone IIA Ameliorates Myocardial Ischemia–Reperfusion Injury via Activating HDAC1-Repressed Nrf2-xCT/Gpx4/HO-1 Axis","authors":"Ke Yan,&nbsp;Shenghui Yu,&nbsp;Xiang Gao,&nbsp;Lei Li,&nbsp;Li Ding","doi":"10.1111/cbdd.70095","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Myocardial ischemia/reperfusion injury (MIRI) brings secondary injury to heart tissues and involves complicated pathophysiological activities, such as cell death, oxidative stress, and inflammation. HDAC1 (Histone Deacetylase 1) has been documented to strengthen MIRI; our study intended to investigate the concrete regulatory mechanisms and functions of tanshinone IIA on HDAC1 in MIRI, which might provide experimental proofs for the adjuvant application of tanshinone IIA in the treatment of MIRI. Genecards and SwissTargetPrediction websites were utilized to download the myocardial infarction-related and tanshinone IIA-targeted genes respectively, and then the String website was applied to display protein–protein interaction (PPI) network. The Cytoscape software was subsequently used to select and display the PPI network of hub genes. AutoDockTools and PyMOL software were utilized to operate molecular docking and visualize the docking results between tanshinone IIA and HDAC1, and Oxygen–glucose deprivation/reoxygenation (OGD/R)-treated myocardiocytes were used as the cell model of MIRI. The protein levels of HDAC1 and nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated pathway were examined by western blot, and cell viability and apoptosis were evaluated by CCK8, Tunnel, and flow cytometry assays. The levels of lactate dehydrogenase, creatine kinase-MB, malondialdehyde, reduced glutathione, and Fe<sup>2+</sup> were assessed by corresponding kit, and MIRI rat models were constructed to verify the therapeutic effects of tanshinone IIA in vivo. Finally, hematoxylin and eosin staining and immunohistochemistry were used to display the pathological changes of MIRI heart tissues and the levels of 4-hydroxynonenal respectively. HDAC1 was the possible target of tanshinone IIA and was involved in the myocardial infarction process. Tanshinone IIA could bind to amino acid residues of HDAC1 with high affinity. Besides, HDAC1 was elevated in OGD/R-treated myocardiocytes, and tanshinone IIA pretreatment ameliorated myocardiocyte apoptosis, the release of inflammatory mediators, and ferroptosis under the following OGD/R treatment, which were abolished by HDAC1 upregulation. Besides, tanshinone IIA pretreatment suppressed HDAC1 expression and further activated the Nrf2-xCT/Gpx4/HO-1 axis in myocardiocytes with OGD/R operation. Functionally, tanshinone IIA pre-injection ameliorated myocardial infarcted areas via activating the HDAC1-suppressed Nrf2-xCT/Gpx4/HO-1 pathway in vivo. Tanshinone IIA could attenuate myocardial apoptosis, inflammatory response, and ferroptosis via activating the HDAC1-repressed Nrf2-xCT/Gpx4/HO-1 axis, which promoted myocardial salvage in the MIRI process.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70095","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial ischemia/reperfusion injury (MIRI) brings secondary injury to heart tissues and involves complicated pathophysiological activities, such as cell death, oxidative stress, and inflammation. HDAC1 (Histone Deacetylase 1) has been documented to strengthen MIRI; our study intended to investigate the concrete regulatory mechanisms and functions of tanshinone IIA on HDAC1 in MIRI, which might provide experimental proofs for the adjuvant application of tanshinone IIA in the treatment of MIRI. Genecards and SwissTargetPrediction websites were utilized to download the myocardial infarction-related and tanshinone IIA-targeted genes respectively, and then the String website was applied to display protein–protein interaction (PPI) network. The Cytoscape software was subsequently used to select and display the PPI network of hub genes. AutoDockTools and PyMOL software were utilized to operate molecular docking and visualize the docking results between tanshinone IIA and HDAC1, and Oxygen–glucose deprivation/reoxygenation (OGD/R)-treated myocardiocytes were used as the cell model of MIRI. The protein levels of HDAC1 and nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated pathway were examined by western blot, and cell viability and apoptosis were evaluated by CCK8, Tunnel, and flow cytometry assays. The levels of lactate dehydrogenase, creatine kinase-MB, malondialdehyde, reduced glutathione, and Fe2+ were assessed by corresponding kit, and MIRI rat models were constructed to verify the therapeutic effects of tanshinone IIA in vivo. Finally, hematoxylin and eosin staining and immunohistochemistry were used to display the pathological changes of MIRI heart tissues and the levels of 4-hydroxynonenal respectively. HDAC1 was the possible target of tanshinone IIA and was involved in the myocardial infarction process. Tanshinone IIA could bind to amino acid residues of HDAC1 with high affinity. Besides, HDAC1 was elevated in OGD/R-treated myocardiocytes, and tanshinone IIA pretreatment ameliorated myocardiocyte apoptosis, the release of inflammatory mediators, and ferroptosis under the following OGD/R treatment, which were abolished by HDAC1 upregulation. Besides, tanshinone IIA pretreatment suppressed HDAC1 expression and further activated the Nrf2-xCT/Gpx4/HO-1 axis in myocardiocytes with OGD/R operation. Functionally, tanshinone IIA pre-injection ameliorated myocardial infarcted areas via activating the HDAC1-suppressed Nrf2-xCT/Gpx4/HO-1 pathway in vivo. Tanshinone IIA could attenuate myocardial apoptosis, inflammatory response, and ferroptosis via activating the HDAC1-repressed Nrf2-xCT/Gpx4/HO-1 axis, which promoted myocardial salvage in the MIRI process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信