Jovana Panic, Arianna Defeudis, Lorenzo Vassallo, Stefano Cirillo, Marco Gatti, Roberto Sghedoni, Michele Avanzo, Angelo Vanzulli, Luca Sorrentino, Luca Boldrini, Huong Elena Tran, Giuditta Chiloiro, Giuseppe Roberto D'Agostino, Enrico Menghi, Roberta Fusco, Antonella Petrillo, Vincenza Granata, Martina Mori, Claudio Fiorino, Barbara Alicja Jereczek-Fossa, Marianna Alessandra Gerardi, Serena Dell'Aversana, Antonio Esposito, Daniele Regge, Samanta Rosati, Gabriella Balestra, Valentina Giannini
{"title":"Rectal Cancer Segmentation: A Methodical Approach for Generalizable Deep Learning in a Multi-Center Setting","authors":"Jovana Panic, Arianna Defeudis, Lorenzo Vassallo, Stefano Cirillo, Marco Gatti, Roberto Sghedoni, Michele Avanzo, Angelo Vanzulli, Luca Sorrentino, Luca Boldrini, Huong Elena Tran, Giuditta Chiloiro, Giuseppe Roberto D'Agostino, Enrico Menghi, Roberta Fusco, Antonella Petrillo, Vincenza Granata, Martina Mori, Claudio Fiorino, Barbara Alicja Jereczek-Fossa, Marianna Alessandra Gerardi, Serena Dell'Aversana, Antonio Esposito, Daniele Regge, Samanta Rosati, Gabriella Balestra, Valentina Giannini","doi":"10.1002/ima.70076","DOIUrl":null,"url":null,"abstract":"<p>Noninvasive Artificial Intelligence (AI) techniques have shown great potential in assisting clinicians through the analysis of medical images. However, significant challenges remain in integrating these systems into clinical practice due to the variability of medical data across multi-center databases and the lack of clear implementation guidelines. These issues hinder the ability to achieve robust, reproducible, and statistically significant results. This study thoroughly analyzes several decision-making steps involved in managing a multi-center database and developing AI-based segmentation models, using rectal cancer as a case study. A dataset of 1212 Magnetic Resonance Images (MRIs) from 14 centers was used. The study examined the impact of different image normalization techniques, network hyperparameters, and training set compositions (in terms of size and construction strategies). The findings emphasize the critical role of image normalization in reducing variability and improving performance. Additionally, the study underscores the importance of carefully selecting network structures and loss functions based on the desired outcomes. The potential of clustering approaches to identify representative training subsets, even with limited data sizes, was also evaluated. While no definitive preprocessing pipeline was identified, several networks developed during the study produced promising results on the external validation set. The insights and methodologies presented may help raise awareness and promote more informed decisions when implementing AI systems in medical imaging.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.70076","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70076","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Noninvasive Artificial Intelligence (AI) techniques have shown great potential in assisting clinicians through the analysis of medical images. However, significant challenges remain in integrating these systems into clinical practice due to the variability of medical data across multi-center databases and the lack of clear implementation guidelines. These issues hinder the ability to achieve robust, reproducible, and statistically significant results. This study thoroughly analyzes several decision-making steps involved in managing a multi-center database and developing AI-based segmentation models, using rectal cancer as a case study. A dataset of 1212 Magnetic Resonance Images (MRIs) from 14 centers was used. The study examined the impact of different image normalization techniques, network hyperparameters, and training set compositions (in terms of size and construction strategies). The findings emphasize the critical role of image normalization in reducing variability and improving performance. Additionally, the study underscores the importance of carefully selecting network structures and loss functions based on the desired outcomes. The potential of clustering approaches to identify representative training subsets, even with limited data sizes, was also evaluated. While no definitive preprocessing pipeline was identified, several networks developed during the study produced promising results on the external validation set. The insights and methodologies presented may help raise awareness and promote more informed decisions when implementing AI systems in medical imaging.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.