Hamed Gholipour, Farid Bozorgnia, Kailash Hambarde, Hamzeh Mohammadigheymasi, Javier Mancilla, Andre Sequeira, João Neves, Hugo Proença, Moharram Challenger
{"title":"A Laplacian-based quantum graph neural networks for quantum semi-supervised learning","authors":"Hamed Gholipour, Farid Bozorgnia, Kailash Hambarde, Hamzeh Mohammadigheymasi, Javier Mancilla, Andre Sequeira, João Neves, Hugo Proença, Moharram Challenger","doi":"10.1007/s11128-025-04725-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Laplacian learning method has proven effective in classical graph-based semi-supervised learning, yet its quantum counterpart remains underexplored. This study systematically evaluates the Laplacian-based quantum semi-supervised learning (QSSL) approach across four benchmark datasets—Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. By experimenting with varying qubit counts and entangling layers, we demonstrate that increased quantum resources do not necessarily lead to improved performance. Our findings reveal that the effectiveness of the method is highly sensitive to dataset characteristics, as well as the number of entangling layers. Optimal configurations, generally featuring moderate entanglement, strike a balance between model complexity and generalization. These results emphasize the importance of dataset-specific hyperparameter tuning in quantum semi-supervised learning frameworks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-025-04725-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04725-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Laplacian learning method has proven effective in classical graph-based semi-supervised learning, yet its quantum counterpart remains underexplored. This study systematically evaluates the Laplacian-based quantum semi-supervised learning (QSSL) approach across four benchmark datasets—Iris, Wine, Breast Cancer Wisconsin, and Heart Disease. By experimenting with varying qubit counts and entangling layers, we demonstrate that increased quantum resources do not necessarily lead to improved performance. Our findings reveal that the effectiveness of the method is highly sensitive to dataset characteristics, as well as the number of entangling layers. Optimal configurations, generally featuring moderate entanglement, strike a balance between model complexity and generalization. These results emphasize the importance of dataset-specific hyperparameter tuning in quantum semi-supervised learning frameworks.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.