A. I. Kasatova, K. S. Kuzmina, D. A. Kasatov, E. V. Barmina, K. O. Aiyyzhy, P. A. Kotelnikova, M. S. Grigoryeva, D. S. Petrunya, E. L. Zavjalov, S. Yu. Taskaev, S. M. Deyev, I. N. Zavestovskaya
{"title":"Elemental Boron-10 Nanoparticles Synthesized by Laser Fragmentation for Boron Neutron Capture Therapy: In Vitro Experiments","authors":"A. I. Kasatova, K. S. Kuzmina, D. A. Kasatov, E. V. Barmina, K. O. Aiyyzhy, P. A. Kotelnikova, M. S. Grigoryeva, D. S. Petrunya, E. L. Zavjalov, S. Yu. Taskaev, S. M. Deyev, I. N. Zavestovskaya","doi":"10.3103/S1068335624602541","DOIUrl":null,"url":null,"abstract":"<p>Elemental boron-10 nanoparticles synthesized by laser fragmentation of micropowder in isopropanol are used for the first time as a boron-containing agent for boron neutron capture therapy. The study is conducted on human cell cultures U87, BT474, and BJ-5TA. It is found that these nanoparticles are nontoxic to all three cell cultures at boron-10 concentrations required for successful boron neutron capture therapy. The cell cultures are pre-incubated with nanoparticles and then irradiated for 30 min with a beam of epithermal neutrons generated by the VITA accelerator source (BINP SB RAS, Novosibirsk). Using in vitro study results (MTT assay and clonogenic analysis), an enhancement of the therapeutic effect of boron neutron capture therapy is observed.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"52 2","pages":"95 - 102"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1068335624602541","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Elemental boron-10 nanoparticles synthesized by laser fragmentation of micropowder in isopropanol are used for the first time as a boron-containing agent for boron neutron capture therapy. The study is conducted on human cell cultures U87, BT474, and BJ-5TA. It is found that these nanoparticles are nontoxic to all three cell cultures at boron-10 concentrations required for successful boron neutron capture therapy. The cell cultures are pre-incubated with nanoparticles and then irradiated for 30 min with a beam of epithermal neutrons generated by the VITA accelerator source (BINP SB RAS, Novosibirsk). Using in vitro study results (MTT assay and clonogenic analysis), an enhancement of the therapeutic effect of boron neutron capture therapy is observed.
期刊介绍:
Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.