{"title":"HDD-Net: Haar Dual Domain Network for Ring Artifacts Correction","authors":"Xuelong Wu;Junsheng Wang;Qingjie Zhao","doi":"10.1109/TCI.2025.3551166","DOIUrl":null,"url":null,"abstract":"Ring artifacts are common artifacts in X-ray Computed Tomography (XCT) scans and have a significant impact on subsequent feature/phase extractions due to the small grayscale gradients in XCT volume data of bulk materials. This paper proposes the Haar Dual Domain Network for correcting ring artifacts. By utilizing the Haar wavelet decomposition on images containing ring artifacts in both the image and projection domains, the ring artifacts are preliminarily separated, facilitating their removal by neural networks while preserving microstructure features such as low-contrast phase boundaries. By constructing a feature fusion network, the information from both 2D slices and 3D projection volume data has been fully integrated to eliminate ring artifacts while preserving the edges of every feature. The effectiveness of the Haar wavelet transform and fusion network has been validated by ablation experiments, proving the application of HDD-Net to large volume of XCT data.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"399-409"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945684/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ring artifacts are common artifacts in X-ray Computed Tomography (XCT) scans and have a significant impact on subsequent feature/phase extractions due to the small grayscale gradients in XCT volume data of bulk materials. This paper proposes the Haar Dual Domain Network for correcting ring artifacts. By utilizing the Haar wavelet decomposition on images containing ring artifacts in both the image and projection domains, the ring artifacts are preliminarily separated, facilitating their removal by neural networks while preserving microstructure features such as low-contrast phase boundaries. By constructing a feature fusion network, the information from both 2D slices and 3D projection volume data has been fully integrated to eliminate ring artifacts while preserving the edges of every feature. The effectiveness of the Haar wavelet transform and fusion network has been validated by ablation experiments, proving the application of HDD-Net to large volume of XCT data.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.