HDD-Net: Haar Dual Domain Network for Ring Artifacts Correction

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xuelong Wu;Junsheng Wang;Qingjie Zhao
{"title":"HDD-Net: Haar Dual Domain Network for Ring Artifacts Correction","authors":"Xuelong Wu;Junsheng Wang;Qingjie Zhao","doi":"10.1109/TCI.2025.3551166","DOIUrl":null,"url":null,"abstract":"Ring artifacts are common artifacts in X-ray Computed Tomography (XCT) scans and have a significant impact on subsequent feature/phase extractions due to the small grayscale gradients in XCT volume data of bulk materials. This paper proposes the Haar Dual Domain Network for correcting ring artifacts. By utilizing the Haar wavelet decomposition on images containing ring artifacts in both the image and projection domains, the ring artifacts are preliminarily separated, facilitating their removal by neural networks while preserving microstructure features such as low-contrast phase boundaries. By constructing a feature fusion network, the information from both 2D slices and 3D projection volume data has been fully integrated to eliminate ring artifacts while preserving the edges of every feature. The effectiveness of the Haar wavelet transform and fusion network has been validated by ablation experiments, proving the application of HDD-Net to large volume of XCT data.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"399-409"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945684/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ring artifacts are common artifacts in X-ray Computed Tomography (XCT) scans and have a significant impact on subsequent feature/phase extractions due to the small grayscale gradients in XCT volume data of bulk materials. This paper proposes the Haar Dual Domain Network for correcting ring artifacts. By utilizing the Haar wavelet decomposition on images containing ring artifacts in both the image and projection domains, the ring artifacts are preliminarily separated, facilitating their removal by neural networks while preserving microstructure features such as low-contrast phase boundaries. By constructing a feature fusion network, the information from both 2D slices and 3D projection volume data has been fully integrated to eliminate ring artifacts while preserving the edges of every feature. The effectiveness of the Haar wavelet transform and fusion network has been validated by ablation experiments, proving the application of HDD-Net to large volume of XCT data.
HDD-Net:用于环伪影校正的Haar双域网络
环形伪影是x射线计算机断层扫描(XCT)中常见的伪影,由于块状材料的XCT体积数据灰度梯度小,对后续的特征/相位提取有重大影响。提出了用于校正环伪影的Haar对偶域网络。利用Haar小波分解对图像和投影域中含有环状伪影的图像进行初步分离,便于神经网络去除环状伪影,同时保留低对比度相界等微观结构特征。通过构建特征融合网络,充分融合了二维切片和三维投影体数据的信息,在保留每个特征边缘的同时消除了环形伪影。通过烧蚀实验验证了Haar小波变换和融合网络的有效性,证明了HDD-Net在大容量XCT数据中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信