{"title":"Dynamics of solitons and modulation instability in a (2+1)-dimensional coupled nonlinear Schrödinger equation","authors":"Vineesh Kumar , Arvind Patel , Monu Kumar","doi":"10.1016/j.matcom.2025.03.022","DOIUrl":null,"url":null,"abstract":"<div><div>This study uses the complex amplitude ansatz and semi-inverse methods to explore the closed-form exact optical soliton solutions of a (2+1)-dimensional coupled nonlinear Schrödinger (NLS) equation. Delving into the specified methods unveils the enigmatic dynamic presence of solitons within the solutions of the NLS equation. These methods produce specific possible solutions of the equation that contain enough free physical parameters. Also, the phase shift and intensity of the soliton solutions are presented. The results of produced solutions are reported as bright, anti-bright, dark, kink, anti-kink, stationary, and one-solitons. This study explores soliton solution of the NLS equation not known earlier. Furthermore, we performed a comprehensive modulation instability (MI) analysis using linear standard stability analysis, providing valuable insights into this phenomenon. Graphical representations of the solutions such as two-dimensional (2D), three-dimensional (3D), and contour plots have been illustrated with appropriate parameter values to provide additional insight into these innovative solutions. It is found that MI gain and instability bandwidth can be controlled by the equations parameter, initial incidence power and perturbation wave numbers.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"235 ","pages":"Pages 95-113"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475425000965","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study uses the complex amplitude ansatz and semi-inverse methods to explore the closed-form exact optical soliton solutions of a (2+1)-dimensional coupled nonlinear Schrödinger (NLS) equation. Delving into the specified methods unveils the enigmatic dynamic presence of solitons within the solutions of the NLS equation. These methods produce specific possible solutions of the equation that contain enough free physical parameters. Also, the phase shift and intensity of the soliton solutions are presented. The results of produced solutions are reported as bright, anti-bright, dark, kink, anti-kink, stationary, and one-solitons. This study explores soliton solution of the NLS equation not known earlier. Furthermore, we performed a comprehensive modulation instability (MI) analysis using linear standard stability analysis, providing valuable insights into this phenomenon. Graphical representations of the solutions such as two-dimensional (2D), three-dimensional (3D), and contour plots have been illustrated with appropriate parameter values to provide additional insight into these innovative solutions. It is found that MI gain and instability bandwidth can be controlled by the equations parameter, initial incidence power and perturbation wave numbers.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.