Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Kristin Kirchner , Joshua Willems
{"title":"Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations","authors":"Kristin Kirchner ,&nbsp;Joshua Willems","doi":"10.1016/j.spa.2025.104639","DOIUrl":null,"url":null,"abstract":"<div><div>We define a number of higher-order Markov properties for stochastic processes <span><math><msub><mrow><mrow><mo>(</mo><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span>, indexed by an interval <span><math><mrow><mi>T</mi><mo>⊆</mo><mi>R</mi></mrow></math></span> and taking values in a real and separable Hilbert space <span><math><mi>U</mi></math></span>. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation <span><math><mrow><mi>L</mi><mi>X</mi><mo>=</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow></math></span>, where <span><math><mi>L</mi></math></span> is a linear operator acting on functions mapping from <span><math><mi>T</mi></math></span> to <span><math><mi>U</mi></math></span> and <span><math><msub><mrow><mrow><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span> is the formal derivative of a <span><math><mi>U</mi></math></span>-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup><mspace></mspace><mi>L</mi></mrow></math></span>.</div><div>As an application, we consider the space–time fractional parabolic operator <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span> of order <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mo>−</mo><mi>A</mi></mrow></math></span> is a linear operator generating a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup on <span><math><mi>U</mi></math></span>. We prove that the resulting solution process satisfies an <span><math><mi>N</mi></math></span>th order Markov property if <span><math><mrow><mi>γ</mi><mo>=</mo><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and show that a necessary condition for the weakest Markov property is generally not satisfied if <span><math><mrow><mi>γ</mi><mo>∉</mo><mi>N</mi></mrow></math></span>. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if <span><math><mrow><mi>U</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for a spatial domain <span><math><mrow><mi>D</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace></mrow></math></span>. Secondly, we show that a <span><math><mi>U</mi></math></span>-valued analog to the fractional Brownian motion with Hurst parameter <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> can be obtained as the limiting case of <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>ɛ</mi><mspace></mspace><msub><mrow><mi>Id</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>H</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mi>↓</mi><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"186 ","pages":"Article 104639"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000808","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We define a number of higher-order Markov properties for stochastic processes (X(t))tT, indexed by an interval TR and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=Ẇ, where L is a linear operator acting on functions mapping from T to U and (Ẇ(t))tT is the formal derivative of a U-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator LL.
As an application, we consider the space–time fractional parabolic operator L=(t+A)γ of order γ(1/2,), where A is a linear operator generating a C0-semigroup on U. We prove that the resulting solution process satisfies an Nth order Markov property if γ=NN and show that a necessary condition for the weakest Markov property is generally not satisfied if γN. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if U=L2(D) for a spatial domain DRd. Secondly, we show that a U-valued analog to the fractional Brownian motion with Hurst parameter H(0,1) can be obtained as the limiting case of L=(t+ɛIdU)H+12 for ɛ0.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信