{"title":"Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations","authors":"Kristin Kirchner , Joshua Willems","doi":"10.1016/j.spa.2025.104639","DOIUrl":null,"url":null,"abstract":"<div><div>We define a number of higher-order Markov properties for stochastic processes <span><math><msub><mrow><mrow><mo>(</mo><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span>, indexed by an interval <span><math><mrow><mi>T</mi><mo>⊆</mo><mi>R</mi></mrow></math></span> and taking values in a real and separable Hilbert space <span><math><mi>U</mi></math></span>. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation <span><math><mrow><mi>L</mi><mi>X</mi><mo>=</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow></math></span>, where <span><math><mi>L</mi></math></span> is a linear operator acting on functions mapping from <span><math><mi>T</mi></math></span> to <span><math><mi>U</mi></math></span> and <span><math><msub><mrow><mrow><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mo>∈</mo><mi>T</mi></mrow></msub></math></span> is the formal derivative of a <span><math><mi>U</mi></math></span>-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup><mspace></mspace><mi>L</mi></mrow></math></span>.</div><div>As an application, we consider the space–time fractional parabolic operator <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mo>)</mo></mrow></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span> of order <span><math><mrow><mi>γ</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mo>−</mo><mi>A</mi></mrow></math></span> is a linear operator generating a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-semigroup on <span><math><mi>U</mi></math></span>. We prove that the resulting solution process satisfies an <span><math><mi>N</mi></math></span>th order Markov property if <span><math><mrow><mi>γ</mi><mo>=</mo><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> and show that a necessary condition for the weakest Markov property is generally not satisfied if <span><math><mrow><mi>γ</mi><mo>∉</mo><mi>N</mi></mrow></math></span>. The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if <span><math><mrow><mi>U</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow></mrow></math></span> for a spatial domain <span><math><mrow><mi>D</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace></mspace></mrow></math></span>. Secondly, we show that a <span><math><mi>U</mi></math></span>-valued analog to the fractional Brownian motion with Hurst parameter <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> can be obtained as the limiting case of <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>ɛ</mi><mspace></mspace><msub><mrow><mi>Id</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>H</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> for <span><math><mrow><mi>ɛ</mi><mi>↓</mi><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"186 ","pages":"Article 104639"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925000808","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We define a number of higher-order Markov properties for stochastic processes , indexed by an interval and taking values in a real and separable Hilbert space . We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation , where is a linear operator acting on functions mapping from to and is the formal derivative of a -valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator .
As an application, we consider the space–time fractional parabolic operator of order , where is a linear operator generating a -semigroup on . We prove that the resulting solution process satisfies an th order Markov property if and show that a necessary condition for the weakest Markov property is generally not satisfied if . The relevance of this class of processes is twofold: Firstly, it can be seen as a spatiotemporal generalization of Whittle–Matérn Gaussian random fields if for a spatial domain . Secondly, we show that a -valued analog to the fractional Brownian motion with Hurst parameter can be obtained as the limiting case of for .
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.