Gray-body factors: Method matters

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Alexandre Arbey , Marco Calzà , Yuber F. Perez-Gonzalez
{"title":"Gray-body factors: Method matters","authors":"Alexandre Arbey ,&nbsp;Marco Calzà ,&nbsp;Yuber F. Perez-Gonzalez","doi":"10.1016/j.dark.2025.101903","DOIUrl":null,"url":null,"abstract":"<div><div>The calculation of gray-body factors is essential for understanding Hawking radiation and black hole thermodynamics. While the formalism developed by Chandrasekhar is effective for static black holes, it faces significant challenges in Kerr spacetimes, particularly in the superradiant regime, where a specific choice of coordinates introduces numerical inaccuracies. To address these limitations, an alternative method based on re-scaling radial coordinates and employing Frobenius-like expansions has been investigated. We compare the gray-body factors obtained for a near-maximally rotating black hole using both methods and find that the Chandrasekhar formalism systematically overestimates the values in the superradiant regime compared to well-established analytical results. Specifically, for a spin parameter of <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>999</mn></mrow></math></span>, the Chandrasekhar method yields values approximately twice as large as the correct result. Since this approach has been implemented in <span>BlackHawk</span>, we assess the impact of these discrepancies on constraints derived from gamma-ray observations of highly spinning primordial black holes.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"48 ","pages":"Article 101903"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425000962","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The calculation of gray-body factors is essential for understanding Hawking radiation and black hole thermodynamics. While the formalism developed by Chandrasekhar is effective for static black holes, it faces significant challenges in Kerr spacetimes, particularly in the superradiant regime, where a specific choice of coordinates introduces numerical inaccuracies. To address these limitations, an alternative method based on re-scaling radial coordinates and employing Frobenius-like expansions has been investigated. We compare the gray-body factors obtained for a near-maximally rotating black hole using both methods and find that the Chandrasekhar formalism systematically overestimates the values in the superradiant regime compared to well-established analytical results. Specifically, for a spin parameter of a=0.999, the Chandrasekhar method yields values approximately twice as large as the correct result. Since this approach has been implemented in BlackHawk, we assess the impact of these discrepancies on constraints derived from gamma-ray observations of highly spinning primordial black holes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信