Florian Schwarzhans , Geevarghese George , Lorena Escudero Sanchez , Olgica Zaric , Jean E. Abraham , Ramona Woitek , Sepideh Hatamikia
{"title":"Image normalization techniques and their effect on the robustness and predictive power of breast MRI radiomics","authors":"Florian Schwarzhans , Geevarghese George , Lorena Escudero Sanchez , Olgica Zaric , Jean E. Abraham , Ramona Woitek , Sepideh Hatamikia","doi":"10.1016/j.ejrad.2025.112086","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Radiomics analysis has emerged as a promising approach to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on acquisition and pre-processing techniques used. In this study, we aim to investigate the effect of various image normalization techniques on robustness of radiomics features extracted from breast cancer patient MRI scans.</div></div><div><h3>Materials and methods</h3><div>MRI scans from the publicly available MAMA-MIA dataset and an internal breast MRI test set depicting triple negative breast cancer (TNBC) were used. We compared the effect of commonly used image normalization techniques on radiomics feature robustness<!--> <!-->using Concordance-Correlation-Coefficient (CCC) between multiple combinations of normalization approaches. We also trained machine learning-based prediction models of pathologic complete response (pCR) on radiomics after different normalization techniques were used and compared their areas under the receiver operating characteristic curve (ROC-AUC).</div></div><div><h3>Results</h3><div>For predicting complete pathological response from pre-treatment breast cancer MRI radiomics, the highest overall ROC-AUC was achieved by using a combination of three different normalization techniques indicating their potentially powerful role when working with heterogeneous imaging data. The effect of normalization was more pronounced with smaller training data and normalization may be less important with increasing abundance of training data. Additionally, we observed considerable differences between MRI data sets and their feature robustness towards normalization.</div></div><div><h3>Conclusion</h3><div>Overall, we were able to demonstrate the importance of selecting and standardizing normalization methods for accurate and reliable radiomics analysis in breast MRI scans especially with small training data sets.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"187 ","pages":"Article 112086"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X2500172X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose
Radiomics analysis has emerged as a promising approach to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on acquisition and pre-processing techniques used. In this study, we aim to investigate the effect of various image normalization techniques on robustness of radiomics features extracted from breast cancer patient MRI scans.
Materials and methods
MRI scans from the publicly available MAMA-MIA dataset and an internal breast MRI test set depicting triple negative breast cancer (TNBC) were used. We compared the effect of commonly used image normalization techniques on radiomics feature robustness using Concordance-Correlation-Coefficient (CCC) between multiple combinations of normalization approaches. We also trained machine learning-based prediction models of pathologic complete response (pCR) on radiomics after different normalization techniques were used and compared their areas under the receiver operating characteristic curve (ROC-AUC).
Results
For predicting complete pathological response from pre-treatment breast cancer MRI radiomics, the highest overall ROC-AUC was achieved by using a combination of three different normalization techniques indicating their potentially powerful role when working with heterogeneous imaging data. The effect of normalization was more pronounced with smaller training data and normalization may be less important with increasing abundance of training data. Additionally, we observed considerable differences between MRI data sets and their feature robustness towards normalization.
Conclusion
Overall, we were able to demonstrate the importance of selecting and standardizing normalization methods for accurate and reliable radiomics analysis in breast MRI scans especially with small training data sets.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.