Data-driven model enhancement of late-life lithium-ion batteries

Martín Cornejo, Sammy Jablonski, Marco Fischer, Julius Bahrke, Andreas Jossen
{"title":"Data-driven model enhancement of late-life lithium-ion batteries","authors":"Martín Cornejo,&nbsp;Sammy Jablonski,&nbsp;Marco Fischer,&nbsp;Julius Bahrke,&nbsp;Andreas Jossen","doi":"10.1016/j.fub.2025.100060","DOIUrl":null,"url":null,"abstract":"<div><div>Battery models require parameter adaptation to account for degradation during their lifetime. Current parameter estimation methods need an accurate pre-defined OCV curve, which can be expensive and time-consuming to obtain if not available. Furthermore, the shape of the OCV curve changes as the battery degrades, making measurements at the beginning-of-life insufficient at later stages of the battery lifetime. This work introduces a data-driven approach to build a lithium-ion cell model using only operational data. It enhances an equivalent circuit model with Gaussian process regression to fit the OCV curve and the non-linear SOC dependency in the cell’s internal resistance. To put it to the test, it is compared to a state-of-the-art method in a model fitting benchmark, using a dataset of cells with SOH ranging between 100% and 70%. While the conventional method loses accuracy with cell degradation, the proposed method accurately reconstructs the OCV curve, estimates the cell impedance and achieves a high accuracy over the whole lifetime.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"6 ","pages":"Article 100060"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Battery models require parameter adaptation to account for degradation during their lifetime. Current parameter estimation methods need an accurate pre-defined OCV curve, which can be expensive and time-consuming to obtain if not available. Furthermore, the shape of the OCV curve changes as the battery degrades, making measurements at the beginning-of-life insufficient at later stages of the battery lifetime. This work introduces a data-driven approach to build a lithium-ion cell model using only operational data. It enhances an equivalent circuit model with Gaussian process regression to fit the OCV curve and the non-linear SOC dependency in the cell’s internal resistance. To put it to the test, it is compared to a state-of-the-art method in a model fitting benchmark, using a dataset of cells with SOH ranging between 100% and 70%. While the conventional method loses accuracy with cell degradation, the proposed method accurately reconstructs the OCV curve, estimates the cell impedance and achieves a high accuracy over the whole lifetime.
高龄锂离子电池的数据驱动模型增强
电池模型需要进行参数调整,以考虑电池寿命期间的衰减。目前的参数估计方法需要精确的预定义 OCV 曲线,如果无法获得,则成本高昂且费时费力。此外,OCV 曲线的形状会随着电池的老化而发生变化,因此在电池寿命的后期阶段,寿命初期的测量结果并不充分。这项工作引入了一种数据驱动方法,仅利用运行数据建立锂离子电池模型。它利用高斯过程回归增强了等效电路模型,以拟合 OCV 曲线和电池内阻的非线性 SOC 依赖性。为了对其进行测试,在模型拟合基准测试中,使用 SOH 范围在 100% 和 70% 之间的电池数据集,将其与最先进的方法进行了比较。传统方法会随着电池的衰减而降低精度,而所提出的方法能准确地重建 OCV 曲线,估算电池阻抗,并在整个电池寿命期间达到很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信