{"title":"A robust data-driven approach for modeling industrial systems with non-stationary and sparsely sampled data streams","authors":"Changrui Xie, Xi Chen","doi":"10.1016/j.jprocont.2025.103425","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven modeling has been widely applied to estimate quality variables in industrial processes, while several practical challenges hinder their applications. This paper is concerned with data-driven modeling for industrial plants with non-stationary and sparsely sampled data streams. To avoid overfitting from data scarcity, a Bayesian linear model is preferred and an associated identification algorithm based on variational inference is developed. The key contribution of this work lies in the development of an adaptation mechanism using streaming variational Bayes with power priors, enabling model identification and adaptation to non-stationary and sparsely sampled data within a full Bayesian framework. To enhance robustness against outliers in streaming batches, Student’s-<em>t</em> distribution is used to account for noise. Furthermore, a posterior predictive distribution is approximately derived, allowing the model to provide not only a point estimate but also the associated predictive uncertainty. The effectiveness of the proposed method is validated through a numerical example and an industrial application.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"150 ","pages":"Article 103425"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000538","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven modeling has been widely applied to estimate quality variables in industrial processes, while several practical challenges hinder their applications. This paper is concerned with data-driven modeling for industrial plants with non-stationary and sparsely sampled data streams. To avoid overfitting from data scarcity, a Bayesian linear model is preferred and an associated identification algorithm based on variational inference is developed. The key contribution of this work lies in the development of an adaptation mechanism using streaming variational Bayes with power priors, enabling model identification and adaptation to non-stationary and sparsely sampled data within a full Bayesian framework. To enhance robustness against outliers in streaming batches, Student’s-t distribution is used to account for noise. Furthermore, a posterior predictive distribution is approximately derived, allowing the model to provide not only a point estimate but also the associated predictive uncertainty. The effectiveness of the proposed method is validated through a numerical example and an industrial application.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.