Study on the computational model and distribution characteristics of rock fracture energy induced by supercritical CO2 phase transition

0 ENERGY & FUELS
Erdi Abi , Qifu Zeng , Mingwei Liu , Yingren Zheng , Yafeng Han , Mingjing Jiang , Fayou Wu , Deying Tang , Hongbo Du , Jie Zhang
{"title":"Study on the computational model and distribution characteristics of rock fracture energy induced by supercritical CO2 phase transition","authors":"Erdi Abi ,&nbsp;Qifu Zeng ,&nbsp;Mingwei Liu ,&nbsp;Yingren Zheng ,&nbsp;Yafeng Han ,&nbsp;Mingjing Jiang ,&nbsp;Fayou Wu ,&nbsp;Deying Tang ,&nbsp;Hongbo Du ,&nbsp;Jie Zhang","doi":"10.1016/j.geoen.2025.213862","DOIUrl":null,"url":null,"abstract":"<div><div>The current research on the energy distribution characteristics of supercritical CO<sub>2</sub> phase transition fracturing (CDPTF) is relatively lacking, particularly for effective quantitative calculation methods. This study develops models to calculate CO<sub>2</sub> shock wave and gas expansion energy, quantifying their roles in rock damage and energy distribution. Five field tests measured acoustic wave velocity, rock damage, and energy distribution during CO<sub>2</sub> rock fracturing. The results indicate that supercritical CO<sub>2</sub> creates large rock fragments, with a small crushing zone, forming numerous through-cracks on the surface and causing weak seismic effects. Additionally, the radius of rock failure ranges from 4.3 to 5.6 m, with gas expansion energy accounting for 84.36 % and shock wave energy only 15.64 %. Specifically, the average energy proportion of the shock wave used for rock fragmentation, crack formation, and surface vibration is 2.57 %, 12.13 %, and 1.94 %, respectively. The average energy proportion of gas expansion used for crack propagation is 42.15 %, while the energy used for gas ejection (i.e., wasted energy) accounts for 41.21 %, reflecting a relatively high overall energy efficiency. Furthermore, reducing the initial phase change pressure or increasing the tensile strength of the rock can effectively improve energy utilization efficiency. Minimizing gas leakage or applying the method in high-strength rock areas can further enhance the efficiency of gas expansion energy in rock fracturing. This study provides a theoretical basis for optimizing CDPTF energy utilization in rock fracturing.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"251 ","pages":"Article 213862"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025002209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The current research on the energy distribution characteristics of supercritical CO2 phase transition fracturing (CDPTF) is relatively lacking, particularly for effective quantitative calculation methods. This study develops models to calculate CO2 shock wave and gas expansion energy, quantifying their roles in rock damage and energy distribution. Five field tests measured acoustic wave velocity, rock damage, and energy distribution during CO2 rock fracturing. The results indicate that supercritical CO2 creates large rock fragments, with a small crushing zone, forming numerous through-cracks on the surface and causing weak seismic effects. Additionally, the radius of rock failure ranges from 4.3 to 5.6 m, with gas expansion energy accounting for 84.36 % and shock wave energy only 15.64 %. Specifically, the average energy proportion of the shock wave used for rock fragmentation, crack formation, and surface vibration is 2.57 %, 12.13 %, and 1.94 %, respectively. The average energy proportion of gas expansion used for crack propagation is 42.15 %, while the energy used for gas ejection (i.e., wasted energy) accounts for 41.21 %, reflecting a relatively high overall energy efficiency. Furthermore, reducing the initial phase change pressure or increasing the tensile strength of the rock can effectively improve energy utilization efficiency. Minimizing gas leakage or applying the method in high-strength rock areas can further enhance the efficiency of gas expansion energy in rock fracturing. This study provides a theoretical basis for optimizing CDPTF energy utilization in rock fracturing.
超临界CO2相变诱导岩石断裂能计算模型及分布特征研究
目前对超临界CO2相变压裂(CDPTF)能量分布特征的研究相对缺乏,特别是缺乏有效的定量计算方法。本研究建立了计算CO2冲击波和气体膨胀能的模型,量化了它们在岩石损伤和能量分布中的作用。五个现场测试测量了CO2岩石压裂过程中的声波速度、岩石损伤和能量分布。结果表明,超临界CO2产生的岩石碎块较大,破碎带较小,在地表形成大量贯通裂缝,地震效应较弱。岩石破坏半径范围为4.3 ~ 5.6 m,气体膨胀能量占84.36%,冲击波能量仅占15.64%。其中,用于岩石破碎、裂缝形成和表面振动的冲击波平均能量占比分别为2.57%、12.13%和1.94%。气体膨胀用于裂纹扩展的平均能量占比为42.15%,气体喷出(即浪费能量)占比为41.21%,整体能量效率较高。降低初始相变压力或提高岩石抗拉强度可有效提高能量利用效率。减少气体泄漏或将该方法应用于高强度岩石区,可进一步提高岩石压裂中气体膨胀能的利用效率。该研究为优化CDPTF在岩石压裂中的能量利用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信