{"title":"Towards on-device continual learning with Binary Neural Networks in industrial scenarios","authors":"Lorenzo Vorabbi , Angelo Carraggi , Davide Maltoni , Guido Borghi , Stefano Santi","doi":"10.1016/j.imavis.2025.105524","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the challenges of deploying deep learning models, specifically Binary Neural Networks (BNNs), on resource-constrained embedded devices within the Internet of Things context. As deep learning continues to gain traction in IoT applications, the need for efficient models that can learn continuously from incremental data streams without requiring extensive computational resources has become more pressing. We propose a solution that integrates Continual Learning with BNNs, utilizing replay memory to prevent catastrophic forgetting. Our method focuses on quantized neural networks, introducing the quantization also for the backpropagation step, significantly reducing memory and computational requirements. Furthermore, we enhance the replay memory mechanism by storing intermediate feature maps (<em>i.e.</em> latent replay) with 1-bit precision instead of raw data, enabling efficient memory usage. In addition to well-known benchmarks, we introduce the DL-Hazmat dataset, which consists of over 140k high-resolution grayscale images of 64 hazardous material symbols. Experimental results show a significant improvement in model accuracy and a substantial reduction in memory requirements, demonstrating the effectiveness of our method in enabling deep learning applications on embedded devices in real-world scenarios. Our work expands the application of Continual Learning and BNNs for efficient on-device training, offering a promising solution for IoT and other resource-constrained environments.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"158 ","pages":"Article 105524"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026288562500112X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the challenges of deploying deep learning models, specifically Binary Neural Networks (BNNs), on resource-constrained embedded devices within the Internet of Things context. As deep learning continues to gain traction in IoT applications, the need for efficient models that can learn continuously from incremental data streams without requiring extensive computational resources has become more pressing. We propose a solution that integrates Continual Learning with BNNs, utilizing replay memory to prevent catastrophic forgetting. Our method focuses on quantized neural networks, introducing the quantization also for the backpropagation step, significantly reducing memory and computational requirements. Furthermore, we enhance the replay memory mechanism by storing intermediate feature maps (i.e. latent replay) with 1-bit precision instead of raw data, enabling efficient memory usage. In addition to well-known benchmarks, we introduce the DL-Hazmat dataset, which consists of over 140k high-resolution grayscale images of 64 hazardous material symbols. Experimental results show a significant improvement in model accuracy and a substantial reduction in memory requirements, demonstrating the effectiveness of our method in enabling deep learning applications on embedded devices in real-world scenarios. Our work expands the application of Continual Learning and BNNs for efficient on-device training, offering a promising solution for IoT and other resource-constrained environments.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.