{"title":"Forecasting age distribution of deaths: Cumulative distribution function transformation","authors":"Han Lin Shang , Steven Haberman","doi":"10.1016/j.insmatheco.2025.03.007","DOIUrl":null,"url":null,"abstract":"<div><div>Like density functions, period life-table death counts are nonnegative and have a constrained integral, and thus live in a constrained nonlinear space. Implementing established modelling and forecasting methods without obeying these constraints can be problematic for such nonlinear data. We introduce cumulative distribution function transformation to forecast the life-table death counts. Using the Japanese life-table death counts obtained from the <span><span>Japanese Mortality Database (2024)</span></span>, we evaluate the point and interval forecast accuracies of the proposed approach, which compares favourably to an existing compositional data analytic approach. The improved forecast accuracy of life-table death counts is of great interest to demographers for estimating age-specific survival probabilities and life expectancy and actuaries for determining temporary annuity prices for different ages and maturities.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"122 ","pages":"Pages 249-261"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668725000447","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Like density functions, period life-table death counts are nonnegative and have a constrained integral, and thus live in a constrained nonlinear space. Implementing established modelling and forecasting methods without obeying these constraints can be problematic for such nonlinear data. We introduce cumulative distribution function transformation to forecast the life-table death counts. Using the Japanese life-table death counts obtained from the Japanese Mortality Database (2024), we evaluate the point and interval forecast accuracies of the proposed approach, which compares favourably to an existing compositional data analytic approach. The improved forecast accuracy of life-table death counts is of great interest to demographers for estimating age-specific survival probabilities and life expectancy and actuaries for determining temporary annuity prices for different ages and maturities.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.