ADHDSymTracker: Predicting ADHD Symptoms using Apple HealthKit Data

Q2 Health Professions
Shweta Ware , Allison Baun , Peiyi Wang , Caleb Kwakye , Sofia Dimotsi , Ethan Swift , Nikoloz Gvelesiani , Laura E. Knouse
{"title":"ADHDSymTracker: Predicting ADHD Symptoms using Apple HealthKit Data","authors":"Shweta Ware ,&nbsp;Allison Baun ,&nbsp;Peiyi Wang ,&nbsp;Caleb Kwakye ,&nbsp;Sofia Dimotsi ,&nbsp;Ethan Swift ,&nbsp;Nikoloz Gvelesiani ,&nbsp;Laura E. Knouse","doi":"10.1016/j.smhl.2025.100563","DOIUrl":null,"url":null,"abstract":"<div><div>Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent condition that impacts cognitive and behavioral functioning, posing significant challenges for individuals’ academic and daily lives, particularly among college students. The core symptoms are inattention, hyperactivity and impulsivity. Current diagnostic and symptom tracking methods, whether clinician-administered or self-reported, have several limitations, such as recall bias, high costs, and the necessity for manual intervention. This underscores the necessity for an objective, accurate, and cost-effective tool for ADHD diagnosis that requires minimal manual intervention. To address this issue, we propose a novel approach, ADHDSymTracker, which uses Apple HealthKit data to predict ADHD symptoms. We calculated behavioral features using data collected from 38 college-age students including some with ADHD and developed a suite of machine learning models for ADHD symptom prediction. Our results from ADHDSymTracker indicate that most symptoms can be predicted with reasonable accuracy, achieving an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> score as high as 0.72, rendering it a promising solution for automatic and continuous ADHD monitoring.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100563"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent condition that impacts cognitive and behavioral functioning, posing significant challenges for individuals’ academic and daily lives, particularly among college students. The core symptoms are inattention, hyperactivity and impulsivity. Current diagnostic and symptom tracking methods, whether clinician-administered or self-reported, have several limitations, such as recall bias, high costs, and the necessity for manual intervention. This underscores the necessity for an objective, accurate, and cost-effective tool for ADHD diagnosis that requires minimal manual intervention. To address this issue, we propose a novel approach, ADHDSymTracker, which uses Apple HealthKit data to predict ADHD symptoms. We calculated behavioral features using data collected from 38 college-age students including some with ADHD and developed a suite of machine learning models for ADHD symptom prediction. Our results from ADHDSymTracker indicate that most symptoms can be predicted with reasonable accuracy, achieving an F1 score as high as 0.72, rendering it a promising solution for automatic and continuous ADHD monitoring.
ADHDSymTracker:使用Apple HealthKit数据预测ADHD症状
注意缺陷多动障碍(ADHD)是一种影响认知和行为功能的普遍疾病,对个人的学习和日常生活构成了重大挑战,尤其是在大学生中。核心症状是注意力不集中、多动和冲动。目前的诊断和症状跟踪方法,无论是临床给药还是自我报告,都有一些局限性,如回忆偏差、高成本和人工干预的必要性。这强调了需要一种客观、准确、成本效益高的ADHD诊断工具,这种工具需要最少的人工干预。为了解决这个问题,我们提出了一种新的方法,ADHDSymTracker,它使用Apple HealthKit数据来预测ADHD症状。我们使用从38名大学生中收集的数据来计算行为特征,其中包括一些患有多动症的学生,并开发了一套用于多动症症状预测的机器学习模型。我们的ADHDSymTracker的结果表明,大多数症状都可以以合理的准确性预测,F1得分高达0.72,使其成为自动连续监测ADHD的有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信