{"title":"SNOMED CT ontology multi-relation classification by using knowledge embedding in neural network","authors":"Bofan He, Jerry Q. Cheng, Huanying Gu","doi":"10.1016/j.smhl.2025.100560","DOIUrl":null,"url":null,"abstract":"<div><div>SNOMED CT is a widely recognized healthcare terminology designed to comprehensively represent clinical knowledge. Identifying missing or incorrect relationships between medical concepts is crucial for enhancing the scope and quality of this ontology, thereby improving healthcare analytics and decision support. In this study, we propose a novel multi-link prediction approach that utilizes knowledge graph embeddings and neural networks to infer missing relationships within the SNOMED CT knowledge graph. By utilizing TransE, we train embeddings for triples (concept, relation, concept) and develop a multi-head classifier to predict relationship types based solely on concept pairs. With an embedding dimension of 200, a batch size of 128, and 10 epochs, we achieved the highest test accuracy of 91.96% in relationships prediction tasks. This study demonstrates an optimal balance between efficiency, generalization, and representational capacity. By expanding on existing methodologies, this work offers insights into practical applications for ontology enrichment and contributes to the ongoing advancement of predictive models in healthcare informatics. Furthermore, it highlights the potential scalability of the approach, providing a framework that can be extended to other knowledge graphs and domains.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100560"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
SNOMED CT is a widely recognized healthcare terminology designed to comprehensively represent clinical knowledge. Identifying missing or incorrect relationships between medical concepts is crucial for enhancing the scope and quality of this ontology, thereby improving healthcare analytics and decision support. In this study, we propose a novel multi-link prediction approach that utilizes knowledge graph embeddings and neural networks to infer missing relationships within the SNOMED CT knowledge graph. By utilizing TransE, we train embeddings for triples (concept, relation, concept) and develop a multi-head classifier to predict relationship types based solely on concept pairs. With an embedding dimension of 200, a batch size of 128, and 10 epochs, we achieved the highest test accuracy of 91.96% in relationships prediction tasks. This study demonstrates an optimal balance between efficiency, generalization, and representational capacity. By expanding on existing methodologies, this work offers insights into practical applications for ontology enrichment and contributes to the ongoing advancement of predictive models in healthcare informatics. Furthermore, it highlights the potential scalability of the approach, providing a framework that can be extended to other knowledge graphs and domains.