Katarzyna Ewa Lewińska , Akpona Okujeni , Katja Kowalski , Fabian Lehmann , Volker C. Radeloff , Ulf Leser , Patrick Hostert
{"title":"Impact of data density and endmember definitions on long-term trends in ground cover fractions across European grasslands","authors":"Katarzyna Ewa Lewińska , Akpona Okujeni , Katja Kowalski , Fabian Lehmann , Volker C. Radeloff , Ulf Leser , Patrick Hostert","doi":"10.1016/j.rse.2025.114736","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term monitoring of grasslands is pivotal for ensuring continuity of many environmental services and for supporting food security and environmental modeling. Remote sensing provides an irreplaceable source of information for studying changes in grasslands. Specifically, Spectral Mixture Analysis (SMA) allows for quantification of physically meaningful ground cover fractions of grassland ecosystems (i.e., green vegetation, non-photosynthetic vegetation, and soil), which is crucial for our understanding of change processes and their drivers. However, although popular due to straightforward implementation and low computational cost, ‘classical’ SMA relies on a single endmember definition for each targeted ground cover component, thus offering limited suitability and generalization capability for heterogeneous landscapes. Furthermore, the impact of irregular data density on SMA-based long-term trends in grassland ground cover has also not yet been critically addressed.</div><div>We conducted a systematic assessment of i) the impact of data density on long-term trends in ground cover fractions in grasslands; and ii) the effect of endmember definition used in ‘classical’ SMA on pixel- and map-level trends of grassland ground cover fractions. We performed our study for 13 sites across European grasslands and derived the trends based on the Cumulative Endmember Fractions calculated from monthly composites. We compared three different data density scenarios, i.e., 1984–2021 Landsat data record as is, 1984–2021 Landsat data record with the monthly probability of data after 2014 adjusted to the pre-2014 levels, and the combined 1984–2021 Landsat and 2015–2021 Sentinel-2 datasets. For each site we ran SMA using a selection of site-specific and generalized endmembers, and compared the pixel- and map-level trends. Our results indicated no significant impact of varying data density on the long-term trends from Cumulative Endmember Fractions in European grasslands. Conversely, the use of different endmember definitions led in some regions to significantly different pixel- and map-level long-term trends raising questions about the suitability of the ‘classical’ SMA for complex landscapes and large territories. Therefore, we caution against using the ‘classical’ SMA for remote-sensing-based applications across broader scales or in heterogenous landscapes, particularly for trend analyses, as the results may lead to erroneous conclusions.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"323 ","pages":"Article 114736"},"PeriodicalIF":11.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725001403","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term monitoring of grasslands is pivotal for ensuring continuity of many environmental services and for supporting food security and environmental modeling. Remote sensing provides an irreplaceable source of information for studying changes in grasslands. Specifically, Spectral Mixture Analysis (SMA) allows for quantification of physically meaningful ground cover fractions of grassland ecosystems (i.e., green vegetation, non-photosynthetic vegetation, and soil), which is crucial for our understanding of change processes and their drivers. However, although popular due to straightforward implementation and low computational cost, ‘classical’ SMA relies on a single endmember definition for each targeted ground cover component, thus offering limited suitability and generalization capability for heterogeneous landscapes. Furthermore, the impact of irregular data density on SMA-based long-term trends in grassland ground cover has also not yet been critically addressed.
We conducted a systematic assessment of i) the impact of data density on long-term trends in ground cover fractions in grasslands; and ii) the effect of endmember definition used in ‘classical’ SMA on pixel- and map-level trends of grassland ground cover fractions. We performed our study for 13 sites across European grasslands and derived the trends based on the Cumulative Endmember Fractions calculated from monthly composites. We compared three different data density scenarios, i.e., 1984–2021 Landsat data record as is, 1984–2021 Landsat data record with the monthly probability of data after 2014 adjusted to the pre-2014 levels, and the combined 1984–2021 Landsat and 2015–2021 Sentinel-2 datasets. For each site we ran SMA using a selection of site-specific and generalized endmembers, and compared the pixel- and map-level trends. Our results indicated no significant impact of varying data density on the long-term trends from Cumulative Endmember Fractions in European grasslands. Conversely, the use of different endmember definitions led in some regions to significantly different pixel- and map-level long-term trends raising questions about the suitability of the ‘classical’ SMA for complex landscapes and large territories. Therefore, we caution against using the ‘classical’ SMA for remote-sensing-based applications across broader scales or in heterogenous landscapes, particularly for trend analyses, as the results may lead to erroneous conclusions.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.