Yue Chen , Jun Wang , Chun Xiu Jin , Hao Wu , Wei He , Zi Xian Wu , Zi Tong Wang , Yi Zhou Hong , Zi Hang Yang , Song Yang , Fei Biao Song , Jian Luo , Jun Long Sun
{"title":"Study on the potential impact of sustained high temperatures during non-breeding season on largemouth bass","authors":"Yue Chen , Jun Wang , Chun Xiu Jin , Hao Wu , Wei He , Zi Xian Wu , Zi Tong Wang , Yi Zhou Hong , Zi Hang Yang , Song Yang , Fei Biao Song , Jian Luo , Jun Long Sun","doi":"10.1016/j.cbd.2025.101501","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing scale of largemouth bass breeding, the demand for seedlings is increasing. As global temperatures rise, it is crucial to study the effects of high temperature their regulatory mechanisms in largemouth bass. In this study, we simulated a high water temperature (28 °C) in the non-breeding season in aquaculture ponds for 28 days to examine the growth, reproduction, metabolism, apoptosis, and methylation markers in largemouth bass; transcriptome analysis was also performed. The results showed no significant difference in body weight between male and female largemouth bass. However, the high-temperature exposed females had reduced growth hormone (GH) and estradiol (E2) levels and elevated cortisol levels. They also showed upregulated expression of <em>AR</em>, <em>cyp19a</em>, <em>igf</em>, <em>fshβ</em>, and <em>lhβ</em> in ovarian tissue. Transcriptomic comparisons between temperature treatments revealed 963 differentially expressed genes in females and 700 in males. Both the ECM receptor interaction and PPAR signaling pathways were significantly enriched. High-temperature enhanced the lipid metabolism process through the PPAR signaling pathway. High temperatures increased oxidative stress in females, which corresponded with increases in SOD, CAT, and GSH-Px, likely to counteract the excess reactive oxygen species. Moreover, endoplasmic reticulum stress was activated, indicated by increases in IRE1 and ATF6, leading to the upregulation of apoptosis-related genes and ovarian cell apoptosis. At high temperature, 5-MC%, demethylase, and methyltransferase were not different in females, while 5-MC% and methyltransferase were higher and demethylase was lower in males. In summary, sustained high temperature affected ovarian development by altering the expression of hormone and gonad related genes and inducing endoplasmic reticulum stress leading to ovarian cell apoptosis. However, low demethylase activity and high genome-wide methylation in the test is suggested that high temperatures may affect testis development via methylation, potentially impacting offspring production.</div></div>","PeriodicalId":55235,"journal":{"name":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","volume":"55 ","pages":"Article 101501"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology D-Genomics & Proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1744117X25000899","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing scale of largemouth bass breeding, the demand for seedlings is increasing. As global temperatures rise, it is crucial to study the effects of high temperature their regulatory mechanisms in largemouth bass. In this study, we simulated a high water temperature (28 °C) in the non-breeding season in aquaculture ponds for 28 days to examine the growth, reproduction, metabolism, apoptosis, and methylation markers in largemouth bass; transcriptome analysis was also performed. The results showed no significant difference in body weight between male and female largemouth bass. However, the high-temperature exposed females had reduced growth hormone (GH) and estradiol (E2) levels and elevated cortisol levels. They also showed upregulated expression of AR, cyp19a, igf, fshβ, and lhβ in ovarian tissue. Transcriptomic comparisons between temperature treatments revealed 963 differentially expressed genes in females and 700 in males. Both the ECM receptor interaction and PPAR signaling pathways were significantly enriched. High-temperature enhanced the lipid metabolism process through the PPAR signaling pathway. High temperatures increased oxidative stress in females, which corresponded with increases in SOD, CAT, and GSH-Px, likely to counteract the excess reactive oxygen species. Moreover, endoplasmic reticulum stress was activated, indicated by increases in IRE1 and ATF6, leading to the upregulation of apoptosis-related genes and ovarian cell apoptosis. At high temperature, 5-MC%, demethylase, and methyltransferase were not different in females, while 5-MC% and methyltransferase were higher and demethylase was lower in males. In summary, sustained high temperature affected ovarian development by altering the expression of hormone and gonad related genes and inducing endoplasmic reticulum stress leading to ovarian cell apoptosis. However, low demethylase activity and high genome-wide methylation in the test is suggested that high temperatures may affect testis development via methylation, potentially impacting offspring production.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part D: Genomics and Proteomics (CBPD), focuses on “omics” approaches to physiology, including comparative and functional genomics, metagenomics, transcriptomics, proteomics, metabolomics, and lipidomics. Most studies employ “omics” and/or system biology to test specific hypotheses about molecular and biochemical mechanisms underlying physiological responses to the environment. We encourage papers that address fundamental questions in comparative physiology and biochemistry rather than studies with a focus that is purely technical, methodological or descriptive in nature.