Xiaokun Yang , Wenjie Yu , Yanfeng Zhang , Chuanpeng Qiao , Lili Liu , Yongfang Zhang , Qirui Li , Mengfei Mou , Rutao Wang , Xiangsen Yuan , Zhihao Wang , Liting Yan , Xuebo Zhao
{"title":"Enhancing CO tolerance via molecular trapping effect: Single-atom Pt anchored on Mo2C for efficient alkaline hydrogen oxidation reaction","authors":"Xiaokun Yang , Wenjie Yu , Yanfeng Zhang , Chuanpeng Qiao , Lili Liu , Yongfang Zhang , Qirui Li , Mengfei Mou , Rutao Wang , Xiangsen Yuan , Zhihao Wang , Liting Yan , Xuebo Zhao","doi":"10.1016/j.jcis.2025.137489","DOIUrl":null,"url":null,"abstract":"<div><div>Developing highly efficient, stable, and CO-tolerant electrocatalysts for hydrogen oxidation reaction (HOR) remains a critical challenge for practical proton/anion exchange membrane fuel cells. Here in, an atomically dispersed platinum (Pt) on Mo<sub>2</sub>C nanoparticles supported on nitrogen-doped carbon (Pt<sub>SA</sub>Mo<sub>2</sub>C-NC) with a unique yolk-shell structure is presented as a highly efficient and stable catalyst for HOR. The Pt<sub>SA</sub>Mo<sub>2</sub>C-NC catalyst demonstrates remarkable HOR performance, with a high exchange current density of 2.7 mA cm<sup>−2</sup> and a mass activity of 2.15 A/mg<sub>Pt</sub> at 50 mV (vs. RHE), which are 1.5 and 18 times greater than those of the 40 % commercial Pt/C catalyst, respectively. Furthermore, the unique Pt<sub>SA</sub>Mo<sub>2</sub>C-NC structure exhibits superior CO tolerance at H<sub>2</sub>/1,000 ppm CO, significantly outperforming commercial Pt/C catalysts. Density functional theory (DFT) calculations indicate that the introduction of Mo<sub>2</sub>C forms a strong electronic interaction with Pt, which decreases the electron density around the Pt atoms and shifts the d-band center away from the Fermi level. This results in a reduction of the *H adsorption energy and an optimization of the *OH adsorption energy in Pt<sub>SA</sub>Mo<sub>2</sub>C-NC. In addition, by calculating the CO adsorption energy, it was found that Mo<sub>2</sub>C exhibits strong CO adsorption ability, which generating a molecular trapping effect, thereby protecting the Pt active sites from poisoning. The strong metal-support electronic interaction significantly enhances the catalytic activity, stability, and CO tolerance of the material, providing a new strategy for developing catalysts with these desirable properties.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"692 ","pages":"Article 137489"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972500880X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing highly efficient, stable, and CO-tolerant electrocatalysts for hydrogen oxidation reaction (HOR) remains a critical challenge for practical proton/anion exchange membrane fuel cells. Here in, an atomically dispersed platinum (Pt) on Mo2C nanoparticles supported on nitrogen-doped carbon (PtSAMo2C-NC) with a unique yolk-shell structure is presented as a highly efficient and stable catalyst for HOR. The PtSAMo2C-NC catalyst demonstrates remarkable HOR performance, with a high exchange current density of 2.7 mA cm−2 and a mass activity of 2.15 A/mgPt at 50 mV (vs. RHE), which are 1.5 and 18 times greater than those of the 40 % commercial Pt/C catalyst, respectively. Furthermore, the unique PtSAMo2C-NC structure exhibits superior CO tolerance at H2/1,000 ppm CO, significantly outperforming commercial Pt/C catalysts. Density functional theory (DFT) calculations indicate that the introduction of Mo2C forms a strong electronic interaction with Pt, which decreases the electron density around the Pt atoms and shifts the d-band center away from the Fermi level. This results in a reduction of the *H adsorption energy and an optimization of the *OH adsorption energy in PtSAMo2C-NC. In addition, by calculating the CO adsorption energy, it was found that Mo2C exhibits strong CO adsorption ability, which generating a molecular trapping effect, thereby protecting the Pt active sites from poisoning. The strong metal-support electronic interaction significantly enhances the catalytic activity, stability, and CO tolerance of the material, providing a new strategy for developing catalysts with these desirable properties.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies