Deterministic and stochastic SAIU epidemic models with general incidence rate

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Qixing Han, Lidong Zhou
{"title":"Deterministic and stochastic SAIU epidemic models with general incidence rate","authors":"Qixing Han,&nbsp;Lidong Zhou","doi":"10.1016/j.chaos.2025.116304","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we develop a SAIU epidemic model with general incidence rate in deterministic and stochastic systems. To begin with, the existence and local asymptotically stability of equilibriums are discussed in deterministic system. Considering the interference of environmental noise on the spread of infectious diseases, we use logarithmic Ornstein–Uhlenbeck process to describe the random phenomenon. Moreover, we show the existence of stationary distribution in stochastic system by constructing several Lyapunov functions and give sufficient conditions for the extinction of the disease. Furthermore, we investigate the exact local expression of the density function of the stochastic model around the unique local equilibrium. In the end, we employ numerical simulations to support theoretical results and compare deterministic and stochastic environments.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116304"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925003170","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we develop a SAIU epidemic model with general incidence rate in deterministic and stochastic systems. To begin with, the existence and local asymptotically stability of equilibriums are discussed in deterministic system. Considering the interference of environmental noise on the spread of infectious diseases, we use logarithmic Ornstein–Uhlenbeck process to describe the random phenomenon. Moreover, we show the existence of stationary distribution in stochastic system by constructing several Lyapunov functions and give sufficient conditions for the extinction of the disease. Furthermore, we investigate the exact local expression of the density function of the stochastic model around the unique local equilibrium. In the end, we employ numerical simulations to support theoretical results and compare deterministic and stochastic environments.
具有一般发病率的确定性和随机SAIU流行病模型
在本研究中,我们建立了一个在确定性和随机系统中具有一般发病率的SAIU流行病模型。首先,讨论了确定性系统中平衡点的存在性和局部渐近稳定性。考虑到环境噪声对传染病传播的干扰,我们采用对数Ornstein-Uhlenbeck过程来描述随机现象。此外,通过构造Lyapunov函数证明了随机系统中平稳分布的存在性,并给出了疾病消除的充分条件。此外,我们还研究了随机模型在唯一局部平衡附近密度函数的精确局部表达式。最后,我们采用数值模拟来支持理论结果,并比较了确定性和随机环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信