{"title":"Does the rate of hip abductor and adductor muscle activation during weight transfer influence voluntary lateral stepping in chronic stroke?","authors":"Shabnam Lateef, Marcel Bahia Lanza, Vicki L. Gray","doi":"10.1016/j.jelekin.2025.103003","DOIUrl":null,"url":null,"abstract":"<div><div>People with chronic stroke (PwCS) suffer from impaired lateral weight transfer, resulting in a loss of balance. The primary purpose of this study was to examine how stroke impairs the rate of hip abductor-adductor muscle activation during weight transfer compared to controls, and whether this influences subsequent stepping performance. The secondary purpose was to determine how stroke affects bilateral coordinated hip abductor-adductor muscle activity between the step and stance legs. 20 PwCS (61.6 ± 7.4 years, 4F/16 M) and 10 healthy controls (64.8 ± 8.9 years, 5F/5M) were included. Participants took a voluntary lateral step, as quickly as possible, in response to a light cue. Bilateral Adductor Longus (ADD) and Gluteus Medius (GM) rate of muscle activation (RoA) were measured using electromyography, and spatiotemporal step characteristics were measured using motion capture. Paretic (<em>p</em> < 0.01) and non-paretic (<em>p</em> < 0.01) stance and step legs had a reduced GM and ADD RoA during weight transfer compared to controls. Reduced stance and step GM and ADD RoA were associated with longer weight transfer and step initiation times (r<sub>s</sub> = − 0.47 to – 0.63, <em>p</em> < 0.001). PwCS had a lack of bilateral coordinated GM and ADD activity (<em>p</em> > 0.05). Post-stroke reductions in GM and ADD RoA contribute to altered step characteristics.</div></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"82 ","pages":"Article 103003"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105064112500029X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
People with chronic stroke (PwCS) suffer from impaired lateral weight transfer, resulting in a loss of balance. The primary purpose of this study was to examine how stroke impairs the rate of hip abductor-adductor muscle activation during weight transfer compared to controls, and whether this influences subsequent stepping performance. The secondary purpose was to determine how stroke affects bilateral coordinated hip abductor-adductor muscle activity between the step and stance legs. 20 PwCS (61.6 ± 7.4 years, 4F/16 M) and 10 healthy controls (64.8 ± 8.9 years, 5F/5M) were included. Participants took a voluntary lateral step, as quickly as possible, in response to a light cue. Bilateral Adductor Longus (ADD) and Gluteus Medius (GM) rate of muscle activation (RoA) were measured using electromyography, and spatiotemporal step characteristics were measured using motion capture. Paretic (p < 0.01) and non-paretic (p < 0.01) stance and step legs had a reduced GM and ADD RoA during weight transfer compared to controls. Reduced stance and step GM and ADD RoA were associated with longer weight transfer and step initiation times (rs = − 0.47 to – 0.63, p < 0.001). PwCS had a lack of bilateral coordinated GM and ADD activity (p > 0.05). Post-stroke reductions in GM and ADD RoA contribute to altered step characteristics.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.