Teng Chen , Yumei Ma , Zhenkuan Pan , Weining Wang , Jinpeng Yu
{"title":"Fusion of multi-scale feature extraction and adaptive multi-channel graph neural network for 12-lead ECG classification","authors":"Teng Chen , Yumei Ma , Zhenkuan Pan , Weining Wang , Jinpeng Yu","doi":"10.1016/j.cmpb.2025.108725","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective:</h3><div>The 12-lead electrocardiography (ECG) is a widely used diagnostic method in clinical practice for cardiovascular diseases. The potential correlation between interlead signals is an important reference for clinical diagnosis but is often overlooked by most deep learning methods. Although graph neural networks can capture the associations between leads through edge topology, the complex correlations inherent in 12-lead ECG may involve edge topology, node features, or their combination.</div></div><div><h3>Methods:</h3><div>In this study, we propose a multi-scale adaptive graph fusion network (MSAGFN) model, which fuses multi-scale feature extraction and adaptive multi-channel graph neural network (AMGNN) for 12-lead ECG classification. The proposed MSAGFN model first extracts multi-scale features individually from 12 leads and then utilizes these features as nodes to construct feature graphs and topology graphs. To efficiently capture the most correlated information from the feature graphs and topology graphs, AMGNN iteratively performs a series of graph operations to learn the final graph-level representations for prediction. Moreover, we incorporate consistency and disparity constraints into our model to further refine the learned features.</div></div><div><h3>Results:</h3><div>Our model was validated on the PTB-XL dataset, achieving an area under the receiver operating characteristic curve score of 0.937, mean accuracy of 0.894, and maximum F1 score of 0.815. These results surpass the corresponding metrics of state-of-the-art methods. Additionally, we conducted ablation studies to further demonstrate the effectiveness of our model.</div></div><div><h3>Conclusions:</h3><div>Our study demonstrates that, in 12-lead ECG classification, by constructing topology graphs based on physiological relationships and feature graphs based on lead feature relationships, and effectively integrating them, we can fully explore and utilize the complementary characteristics of the two graph structures. By combining these structures, we construct a comprehensive data view, significantly enhancing the feature representation and classification accuracy.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"265 ","pages":"Article 108725"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001427","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective:
The 12-lead electrocardiography (ECG) is a widely used diagnostic method in clinical practice for cardiovascular diseases. The potential correlation between interlead signals is an important reference for clinical diagnosis but is often overlooked by most deep learning methods. Although graph neural networks can capture the associations between leads through edge topology, the complex correlations inherent in 12-lead ECG may involve edge topology, node features, or their combination.
Methods:
In this study, we propose a multi-scale adaptive graph fusion network (MSAGFN) model, which fuses multi-scale feature extraction and adaptive multi-channel graph neural network (AMGNN) for 12-lead ECG classification. The proposed MSAGFN model first extracts multi-scale features individually from 12 leads and then utilizes these features as nodes to construct feature graphs and topology graphs. To efficiently capture the most correlated information from the feature graphs and topology graphs, AMGNN iteratively performs a series of graph operations to learn the final graph-level representations for prediction. Moreover, we incorporate consistency and disparity constraints into our model to further refine the learned features.
Results:
Our model was validated on the PTB-XL dataset, achieving an area under the receiver operating characteristic curve score of 0.937, mean accuracy of 0.894, and maximum F1 score of 0.815. These results surpass the corresponding metrics of state-of-the-art methods. Additionally, we conducted ablation studies to further demonstrate the effectiveness of our model.
Conclusions:
Our study demonstrates that, in 12-lead ECG classification, by constructing topology graphs based on physiological relationships and feature graphs based on lead feature relationships, and effectively integrating them, we can fully explore and utilize the complementary characteristics of the two graph structures. By combining these structures, we construct a comprehensive data view, significantly enhancing the feature representation and classification accuracy.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.