Embedding spaces of split links

IF 1.5 1区 数学 Q1 MATHEMATICS
Rachael Boyd , Corey Bregman
{"title":"Embedding spaces of split links","authors":"Rachael Boyd ,&nbsp;Corey Bregman","doi":"10.1016/j.aim.2025.110235","DOIUrl":null,"url":null,"abstract":"<div><div>We study the homotopy type of the space <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> of unparametrised embeddings of a split link <span><math><mi>L</mi><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊔</mo><mo>…</mo><mo>⊔</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Our main result is a simple description of the fundamental group, or motion group, of <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span>, and we extend this to a description of the motion group of embeddings in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The main tool we build is a semi-simplicial space of separating systems, which we show is homotopy equivalent to <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span>. This combinatorial object provides a gateway to studying the homotopy type of <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> via the homotopy type of the spaces <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110235"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001331","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the homotopy type of the space E(L) of unparametrised embeddings of a split link L=L1Ln in R3. Our main result is a simple description of the fundamental group, or motion group, of E(L), and we extend this to a description of the motion group of embeddings in S3. The main tool we build is a semi-simplicial space of separating systems, which we show is homotopy equivalent to E(L). This combinatorial object provides a gateway to studying the homotopy type of E(L) via the homotopy type of the spaces E(Li).
嵌入分割链接的空间
研究了空间E(L)中分裂链路L=L1的非参数化嵌入的同伦类型。我们的主要结果是对E(L)的基本群或运动群的简单描述,并将其扩展到S3中嵌入的运动群的描述。我们建立的主要工具是分离系统的半简单空间,我们证明它是等价于E(L)的同伦。这个组合对象为通过空间E(Li)的同伦类型研究E(L)的同伦类型提供了一个入口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信