{"title":"Embedding spaces of split links","authors":"Rachael Boyd , Corey Bregman","doi":"10.1016/j.aim.2025.110235","DOIUrl":null,"url":null,"abstract":"<div><div>We study the homotopy type of the space <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> of unparametrised embeddings of a split link <span><math><mi>L</mi><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊔</mo><mo>…</mo><mo>⊔</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Our main result is a simple description of the fundamental group, or motion group, of <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span>, and we extend this to a description of the motion group of embeddings in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The main tool we build is a semi-simplicial space of separating systems, which we show is homotopy equivalent to <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span>. This combinatorial object provides a gateway to studying the homotopy type of <span><math><mi>E</mi><mo>(</mo><mi>L</mi><mo>)</mo></math></span> via the homotopy type of the spaces <span><math><mi>E</mi><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110235"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001331","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the homotopy type of the space of unparametrised embeddings of a split link in . Our main result is a simple description of the fundamental group, or motion group, of , and we extend this to a description of the motion group of embeddings in . The main tool we build is a semi-simplicial space of separating systems, which we show is homotopy equivalent to . This combinatorial object provides a gateway to studying the homotopy type of via the homotopy type of the spaces .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.