Taut foliations, braid positivity, and unknot detection

IF 1.5 1区 数学 Q1 MATHEMATICS
Siddhi Krishna
{"title":"Taut foliations, braid positivity, and unknot detection","authors":"Siddhi Krishna","doi":"10.1016/j.aim.2025.110233","DOIUrl":null,"url":null,"abstract":"<div><div>We study <em>positive braid knots</em> (the knots in the three–sphere realized as positive braid closures) through the lens of the L-space conjecture. This conjecture predicts that if <em>K</em> is a non-trivial positive braid knot, then for all <span><math><mi>r</mi><mo>&lt;</mo><mn>2</mn><mi>g</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>, the 3-manifold obtained via <em>r</em>-framed Dehn surgery along <em>K</em> admits a taut foliation. Our main result provides some positive evidence towards this conjecture: we construct taut foliations in such manifolds whenever <span><math><mi>r</mi><mo>&lt;</mo><mi>g</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>. As an application, we produce a novel braid positivity obstruction for cable knots by proving that <em>the</em> <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mo>±</mo><mn>1</mn><mo>)</mo></math></span><em>–cable of a knot K is braid positive if and only if K is the unknot</em>. We also present some curious examples demonstrating the limitations of our construction; these examples can also be viewed as providing some negative evidence towards the L-space conjecture. Finally, we apply our main result to produce taut foliations in some splicings of knot exteriors.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"470 ","pages":"Article 110233"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001318","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study positive braid knots (the knots in the three–sphere realized as positive braid closures) through the lens of the L-space conjecture. This conjecture predicts that if K is a non-trivial positive braid knot, then for all r<2g(K)1, the 3-manifold obtained via r-framed Dehn surgery along K admits a taut foliation. Our main result provides some positive evidence towards this conjecture: we construct taut foliations in such manifolds whenever r<g(K)+1. As an application, we produce a novel braid positivity obstruction for cable knots by proving that the (n,±1)–cable of a knot K is braid positive if and only if K is the unknot. We also present some curious examples demonstrating the limitations of our construction; these examples can also be viewed as providing some negative evidence towards the L-space conjecture. Finally, we apply our main result to produce taut foliations in some splicings of knot exteriors.
紧叶理,编织阳性,和解结检测
我们通过l空间猜想的透镜研究了正编织结(三球中的结实现为正编织闭包)。这个猜想预测,如果K是一个非平凡的正辫结,那么对于所有的r<;2g(K)−1,沿着K通过r-框架Dehn手术得到的3流形承认一个紧叶理。我们的主要结果为这个猜想提供了一些积极的证据:当r<;g(K)+1时,我们在这样的流形中构造紧叶。作为一个应用,我们通过证明结点K的(n,±1)-电缆是编织正的当且仅当K是解结,得到了电缆结的一个新的编织正阻碍。我们还提供了一些奇怪的例子来证明我们的结构的局限性;这些例子也可以看作是对l空间猜想提供了一些否定的证据。最后,我们将我们的主要结果应用于在一些结外部的剪接中产生紧叶理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信