Hongfei Zhu , Xiaoshuang Mao , Shahdev Sajnani , Haimei Yang , Ting Li , Siqi Tan
{"title":"Psychrophilic insights into petroleum degradation: Gene abundance dynamics","authors":"Hongfei Zhu , Xiaoshuang Mao , Shahdev Sajnani , Haimei Yang , Ting Li , Siqi Tan","doi":"10.1016/j.enzmictec.2025.110642","DOIUrl":null,"url":null,"abstract":"<div><div>Petroleum degradation by psychrophiles can be enhanced on the basis of omics analyses, which offer better sensitivity than traditional biochemical methods do. A metagenomic analysis focusing on gene abundance comparisons may provide new guidance to optimize soil decontamination under cold environmental conditions. The soil used in this study was sampled from Dalian, from which an indigenous consortium was isolated. The degradative soil systems, initially categorized into control (DLC) and experimental (DLD) groups, were kept at room temperature (20 ± 5 °C) for six weeks. The DLD group was subsequently transferred to a low-temperature environment (5–10 °C) for 90 days and renamed DDL. A petroleum removal rate of 74.59 % was achieved in the process from DLD to DDL groups. Each soil sample was subjected to analysis and metagenomic sequencing. The abundance of genes of interest was compared between pathways to determine trends. The findings demonstrate that psychrophilic degradation is more effective than natural remediation is. The soil microbial community structure displayed site specificity, with 802 genes in DDL associated with 249 pathways, indicating greater abundance of psychrophilic genes in DDL than in DLC. The abundance of key genes was at different orders of magnitude but showed similar trends. The abundance of genes associated with hydrocarbon-related metabolism surpassed that of genes associated with sphingolipid, fatty acid, or benzene metabolism. This study provides valuable insights into psychrophilic microbe-driven petroleum degradation and indicates the need for precise supplementation of biosurfactants to improve remediation efficiency.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"188 ","pages":"Article 110642"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925000626","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Petroleum degradation by psychrophiles can be enhanced on the basis of omics analyses, which offer better sensitivity than traditional biochemical methods do. A metagenomic analysis focusing on gene abundance comparisons may provide new guidance to optimize soil decontamination under cold environmental conditions. The soil used in this study was sampled from Dalian, from which an indigenous consortium was isolated. The degradative soil systems, initially categorized into control (DLC) and experimental (DLD) groups, were kept at room temperature (20 ± 5 °C) for six weeks. The DLD group was subsequently transferred to a low-temperature environment (5–10 °C) for 90 days and renamed DDL. A petroleum removal rate of 74.59 % was achieved in the process from DLD to DDL groups. Each soil sample was subjected to analysis and metagenomic sequencing. The abundance of genes of interest was compared between pathways to determine trends. The findings demonstrate that psychrophilic degradation is more effective than natural remediation is. The soil microbial community structure displayed site specificity, with 802 genes in DDL associated with 249 pathways, indicating greater abundance of psychrophilic genes in DDL than in DLC. The abundance of key genes was at different orders of magnitude but showed similar trends. The abundance of genes associated with hydrocarbon-related metabolism surpassed that of genes associated with sphingolipid, fatty acid, or benzene metabolism. This study provides valuable insights into psychrophilic microbe-driven petroleum degradation and indicates the need for precise supplementation of biosurfactants to improve remediation efficiency.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.