Using plunging-type testing to investigate process mechanics at micro scale machining

Syed Ahsan Adeeb , Yigit Karpat
{"title":"Using plunging-type testing to investigate process mechanics at micro scale machining","authors":"Syed Ahsan Adeeb ,&nbsp;Yigit Karpat","doi":"10.1016/j.procir.2025.02.096","DOIUrl":null,"url":null,"abstract":"<div><div>In plunging-type tests, a cutting tool is given a sinusoidal movement as the work material with a web on its surface is rotated at a constant speed. If the amplitude and feed rate of the cutting tool and rotational speed of the work material are correctly set, the plunging test can be completed within a full rotation. As a result, a detailed investigation of different episodes of micro-scale machining, such as rubbing, plowing, and shearing, can be conducted with a single test. Combined with force measurements and cut chip morphology, the process mechanics can be investigated in detail. This study conducted plunging tests on an ultra-precision CNC with a diamond cutting tool on commercially pure titanium alloy. The differences in tangential and normal forces observed during plunge-in and pull-out periods corresponding to the same amplitude were analyzed using an analytical model. Resultant forces during the pull-out phase are larger than those observed in the plunge-in phase, attributed to an increase in cut chip thickness. A computational model of the plunging-type experiment has also been developed based on the findings of the analytical model. The proposed hybrid approach may be useful to improve identification of material constitutive model parameters based on micro scale machining experiments.</div></div>","PeriodicalId":20535,"journal":{"name":"Procedia CIRP","volume":"133 ","pages":"Pages 561-566"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia CIRP","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212827125001969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In plunging-type tests, a cutting tool is given a sinusoidal movement as the work material with a web on its surface is rotated at a constant speed. If the amplitude and feed rate of the cutting tool and rotational speed of the work material are correctly set, the plunging test can be completed within a full rotation. As a result, a detailed investigation of different episodes of micro-scale machining, such as rubbing, plowing, and shearing, can be conducted with a single test. Combined with force measurements and cut chip morphology, the process mechanics can be investigated in detail. This study conducted plunging tests on an ultra-precision CNC with a diamond cutting tool on commercially pure titanium alloy. The differences in tangential and normal forces observed during plunge-in and pull-out periods corresponding to the same amplitude were analyzed using an analytical model. Resultant forces during the pull-out phase are larger than those observed in the plunge-in phase, attributed to an increase in cut chip thickness. A computational model of the plunging-type experiment has also been developed based on the findings of the analytical model. The proposed hybrid approach may be useful to improve identification of material constitutive model parameters based on micro scale machining experiments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信